Publications by authors named "Yevgen P Yurenko"

The topology and energetics of guanine (G) quadruplexes is governed by supramolecular interactions within their strands. In this work, an extensive quantum mechanical (QM) study has been performed to analyze supramolecular interactions that shape the stems of (4+0) parallel (P) and (2+2) antiparallel (AP) quadruplex systems. The large-scale (≈400 atoms) models of P and AP were constructed from high-quality experimental structures.

View Article and Find Full Text PDF

Anion-π interactions have been shown to stabilize flavoproteins and to regulate the redox potential of the flavin cofactor. They are commonly attributed to electrostatic forces. Herein we show that anion-flavin interactions can have a substantial charge-transfer component.

View Article and Find Full Text PDF

The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN.

View Article and Find Full Text PDF

Structural and energetic features of artificial DNA quadruplexes consisting of base tetrads and their stacks with Na(+)/K(+) ion(s) inside the central pore and incorporating halogenated derivatives of xanthine, 8-fluoro-9-deazaxanthine (FdaX), 8-chloro-9-deazaxanthine (CldaX), 8-bromo-9-deazaxanthine (BrdaX), or 8-iodo-9-deazaxanthine (IdaX), have been investigated by modern state-of-the-art computational tools. The DNA (or RNA) quadruplex models based on 8-halo-9-deazaxanthines are predicted to be more stable relative to those with unmodified xanthine due to the increased stabilizing contributions coming from all three main types of weak interactions (H-bonding, stacking, and ion coordination). Methods for analyzing the electron density are used to understand the nature of forces determining the stability of the system and to gain a predictive potential.

View Article and Find Full Text PDF

Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2'-β or 2'-α,β positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4' atom (O4'-CF2 modification) leads to a preference of the BI relative to AI DNA-like conformers.

View Article and Find Full Text PDF

A new class of quadruplex nucleobases, derived from 3-deazaguanine, has been designed for various applications as smart quadruplex ligands as well as quadruplex-based aptamers, receptors, and sensors. An efficient strategy for modifying the guanine quadruplex core has been developed and tested by using quantum chemistry methods. Several potential guanine derivatives modified at the 3- or 8-position or both are analyzed, and the results compared to reference systems containing natural guanine.

View Article and Find Full Text PDF

This paper is a logical continuation of the theoretical survey of the CH⋯O/N specific contacts in the nucleobase pairs using a wide arsenal of the modern methods, which was initiated in our previous study [J. Biomol. Struct.

View Article and Find Full Text PDF

Guanine DNA quadruplexes are interesting and important biological objects because they represent potential targets for regulatory drugs. Their use as building blocks for biomaterial applications is also being investigated. This contribution reports the in silico design of artificial building blocks derived from xanthine.

View Article and Find Full Text PDF

The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes.

View Article and Find Full Text PDF

A comprehensive quantum-chemical investigation of the conformational landscapes of two nucleoside HIV-1 reverse transcriptase inhibitors, 2',3'-didehydro-2',3'-dideoxyadenosine (d4A), and 2',3'-didehydro-2',3'-dideoxyguanosine (d4G), has been performed at the MP2/6-311++G(d,p)//B3LYP/6-31G(d,p) level of theory. It was found that d4A can adopt 21 conformers within a 5.17 kcal/mol Gibbs free energy range, whereas d4G has 20 conformers within 6.

View Article and Find Full Text PDF

This study aims to cast light on the physico-chemical nature and energetic of the non-conventional CH···O/N H-bonds in the biologically important natural nucleobase pairs using a comprehensive quantum-chemical approach. As a whole, the 36 biologically important pairs, involving canonical and rare tautomers of nucleobases, were studied by means of all available up-to-date state-of-the-art quantum-chemical techniques along with quantum theory "Atoms in molecules" (QTAIM), Natural Bond Orbital (NBO) analysis, Grunenberg's compliance constants theory, geometrical and vibrational analyses to identify the CH···O/N interactions, reveal their physico-chemical nature and estimate their strengths as well as contribution to the overall base-pairs stability. It was shown that all the 38 CH···O/N contacts (25 CH···O and 13 CH···N H-bonds) completely satisfy all classical geometrical, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, and vibrational criteria of H-bonding.

View Article and Find Full Text PDF

Ab initio quantum-chemical study of specific point contacts of replisome proteins with DNA modeled by acetic acid with canonical and mutagenic tautomers of DNA bases methylated at the glycosidic nitrogen atoms was performed in vacuo and continuum with a low dielectric constant (ϵ ∼ 4) corresponding to a hydrophobic interface of protein-nucleic acid interaction. All tautomerized complexes were found to be dynamically unstable, because the electronic energies of their back-reaction barriers do not exceed zero-point vibrational energies associated with the vibrational modes whose harmonic vibrational frequencies become imaginary in the transition states of the tautomerization reaction. Additionally, based on the physicochemical arguments, it was demonstrated that the effects of biomolecular environment cannot ensure dynamic stabilization.

View Article and Find Full Text PDF

A comprehensive quantum-chemical conformational analysis of two nucleoside analogues, 2',3'-didehydro-2',3'-dideoxyuridine (d4U) and 2',3'-didehydro-2',3'-dideoxycytidine (d4C), is reported. The electronic structure calculations were performed at the MP2/6-311++G(d,p)//B3LYP/6-31++G(d,p) level of theory. It was found that d4U and d4C adopt 20 conformers and 19 conformers, respectively, which correspond to local minima on the respective potential energy landscapes.

View Article and Find Full Text PDF

The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'.

View Article and Find Full Text PDF

This work deals with tautomeric transformations of uracil (Ura) and thymine (Thy) in their model complexes with the deprotonated carboxylic group. Essential changes in the UV spectra of the bases upon their interaction with NaAc, vanishing signals of both imino protons in (1)H NMR spectra, and a perceptible decrease in intensity of both IR bands, related to the stretching vibrations nu(C=O) of the carbonyl groups, imply involvement of enolic tautomers. Results of quantum chemical calculations of the double complexes of the Ura(Thy) tautomers with CH(3)COO(-) at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory proved to be incompatible with the spectral features: despite the fact that the complexes of the enolic tautomers are much closer in energy to the diketo ones as compared to isolated tautomers, the energy gap between them is such that in tautomeric equilibrium dominate diketo forms.

View Article and Find Full Text PDF

A comprehensive conformational analysis of isolated 2'-deoxyuridine (dU), a minor DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G (d,p)//DFT B3LYP/6-31G (d,p) level of theory. At 298.15 and 420 K, all 94 allowed conformers of dU are within 8.

View Article and Find Full Text PDF

A comprehensive conformational analysis of isolated 2'-beta-deoxy-thymidine (T), canonical DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. At 298.15 K, all 92 conformers of isolated dT are within a 7.

View Article and Find Full Text PDF

A comprehensive conformational analysis of isolated 2'-beta-deoxy-6-azacytidine (d6AC), an analogue of therapeutically active 6-azacytidine (6AC), has been performed by means of ab initio calculations at the MP2/6-311++G(2df,pd)//DFT B3LYP/6-31G(d,p) level of theory. Among the 81 conformers located within a 7.83 kcal/mol Gibbs energy range at T = 298.

View Article and Find Full Text PDF