Publications by authors named "Yevgen Mamunya"

The development of easy and direct real-time monitoring of welded joint quality instead of surface damage analysis is crucial to improve the quality of industrial products. This work presents the results of high-density polyethylene (HDPE)-based composites with various carbon black (CB) content (from 20 to 30 vol.%) for use as a heating element and strain sensor in electrofusion-welded polymer joints.

View Article and Find Full Text PDF

The effect of particle size and oxidation degree of new carbon microfillers, based on coal pitch (CP) and petroleum pitch (PET) cokes, on the structure as well as thermal, mechanical, and electrical properties of the composites based on ultrahigh molecular weight polyethylene (UHMWPE) was investigated. The composites studied have a segregated structure of filler particle distribution in the UHMWPE matrix. It was found that composite with smaller CP grain fraction has the highest Young's modulus and electrical conductivity compared to the other composites studied, which can be the result of a large contribution of flake-shaped particles.

View Article and Find Full Text PDF

Electrothermal processes were studied in pyroresistive composites based on high-density polyethylene (HDPE) containing 8 vol.% carbon black (CB), 8 vol.% carbon fibers (CF), and their mixture 4 vol.

View Article and Find Full Text PDF

One of the most important directions in the development of additive manufacturing or three-dimensional (3D) printing technologies is the creation of functional materials, which allow not only prototyping but also the manufacturing of products with functional properties. In this paper, poly-lactide acid (PLA) /carbon black (CB) composites with segregated (ordered) structure have been created. Computer simulation based on the Mamunya geometrical model showed that the CB content within = 2.

View Article and Find Full Text PDF

Green synthesis of silver-containing nanocomposites based on polylactide (PLA) was carried out in two ways. With the use of green tea extract, Ag ions were reduced to silver nanoparticles with their subsequent introduction into the PLA (mechanical method) and Ag ions were reduced in the polymer matrix of PLA-AgPalmitate (PLA-AgPalm) (in situ method). Structure, morphology and thermophysical properties of nanocomposites PLA-Ag were studied by FTIR spectroscopy, wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods.

View Article and Find Full Text PDF

Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag ions in the PLA-Ag-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag ions on the structure of PLA-Ag-chitosan nanocomposites were established.

View Article and Find Full Text PDF

Polyethylene (PE) based composites with segregated carbon nanotubes (CNTs) network was successfully prepared by hot compressing of a mechanical mixture of PE and CNT powders. Through comparison with a composite comprising randomly distributed carbon nanotubes of the same concentration, we prove that namely the segregated CNT network is responsible for the excellent electrical properties, i.e.

View Article and Find Full Text PDF

The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li ion and ligand.

View Article and Find Full Text PDF

Unlabelled: In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS).

View Article and Find Full Text PDF

Unlabelled: The relaxation processes of hybrid organic-inorganic polymer nanosystems (OIS) synthesized by joint polymerization of organic and inorganic components were studied using methods of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and broadband dielectric relaxation spectroscopy (DRS). The organic component was a mixture of two products: high-molecular-weight macrodiisocyanate (MDI) with low reactivity and low-molecular-weight isocyanate-containing modifier poly(isocyanate) (PIC) with high reactivity. Sodium silicate (SS) was used as inorganic component.

View Article and Find Full Text PDF