Publications by authors named "Yeun-Ho Joung"

The performance of micromixers, namely their mixing efficiency and throughput, is a critical component in increasing the overall efficiency of microfluidic systems (e.g., lab-on-a-chip and μ-TAS).

View Article and Find Full Text PDF

We propose a new packaging process for an implantable blood pressure sensor using ultrafast laser micro-welding. The sensor is a membrane type, passive device that uses the change in the capacitance caused by the membrane deformation due to applied pressure. Components of the sensor such as inductors and capacitors were fabricated on two glass (quartz) wafers and the two wafers were bonded into a single package.

View Article and Find Full Text PDF

We present a rapid and highly reliable glass (fused silica) microfluidic device fabrication process using various laser processes, including maskless microchannel formation and packaging. Femtosecond laser assisted selective etching was adopted to pattern microfluidic channels on a glass substrate and direct welding was applied for local melting of the glass interface in the vicinity of the microchannels. To pattern channels, a pulse energy of 10 μJ was used with a scanning speed of 100 mm/s at a pulse repetition rate of 500 kHz.

View Article and Find Full Text PDF

Background/aims: Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon.

Methods: The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions after induction of secretion with deoxycholic acid (DCA) as well as after inhibition of secretion with indomethacin, 1,2-bis (-aminophenoxy) ethane--tetra-acetic acid (an intracellular calcium chelator; BAPTA), and tetrodotoxin (TTX) using an Ussing chamber.

View Article and Find Full Text PDF

In this study, the effects of post-plasma treatment on synthesized carbon nanowalls (CNWs) grown with a microwave were investigated. CNWs were synthesized by microwave plasma enhanced chemical vapor deposition (PECVD), employing a mixture of CH4 and H2 gases. The plasma treatment was done in different plasma environments (O2 and H2) but under the same condition of synthesized CNWs.

View Article and Find Full Text PDF

The loss of urinary bladder control/sensation, also known as urinary incontinence (UI), is a common clinical problem in autistic children, diabetics, and the elderly. UI not only causes discomfort for patients but may also lead to kidney failure, infections, and even death. The increase of bladder urine volume/pressure above normal ranges without sensation of UI patients necessitates the need for bladder sensors.

View Article and Find Full Text PDF

From the first pacemaker implant in 1958, numerous engineering and medical activities for implantable medical device development have faced challenges in materials, battery power, functionality, electrical power consumption, size shrinkage, system delivery, and wireless communication. With explosive advances in scientific and engineering technology, many implantable medical devices such as the pacemaker, cochlear implant, and real-time blood pressure sensors have been developed and improved. This trend of progress in medical devices will continue because of the coming super-aged society, which will result in more consumers for the devices.

View Article and Find Full Text PDF

In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W.

View Article and Find Full Text PDF

This study introduces optical properties of a columnar structured zinc oxide [ZnO] antireflection coating for solar cells. We obtained ZnO films of columnar structure on glass substrates using a specially designed radio frequency magnetron sputtering system with different growth angles. Field-emission scanning electron microscopy was utilized to check the growth angles of the ZnO films which were controlled at 0°, 15°, and 30°.

View Article and Find Full Text PDF