RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency.
View Article and Find Full Text PDFLiquid-liquid phase separation (LLPS) is one of the mechanisms mediating the compartmentalization of macromolecules (proteins and nucleic acids) in cells, forming biomolecular condensates or membraneless organelles. Consequently, the systematic identification of potential LLPS proteins is crucial for understanding the phase separation process and its biological mechanisms. A two-task predictor, Opt_PredLLPS, was developed to discover potential phase separation proteins and further evaluate their mechanism.
View Article and Find Full Text PDFThe formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information.
View Article and Find Full Text PDF