Sun-loving plants undergo shade avoidance syndrome (SAS) to compete with their neighbors for sunlight in shade conditions. Phytochrome B (phyB) plays a dominant role in sensing the shading signals (low red to far-red ratios) and triggering SAS. Shade drives phyB conversion to inactive form, consequently leading to the accumulation of PHYTOCHROMEINTERACTING FACTOR 4 (PIF4) that promotes plant growth.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2024
Light is one of the most essential environmental factors that tightly and precisely control various physiological and developmental processes in plants. B-box CONTAINING PROTEINs (BBXs) play central roles in the regulation of light-dependent development. In this study, we report that BBX9 is a positive regulator of light signaling.
View Article and Find Full Text PDFB-box containing proteins (BBXs) are a class of zinc-ligating transcription factors or regulators that play essential roles in various physiological and developmental processes in plants. They not only directly associate with target genes to regulate their transcription, but also interact with other transcription factors to mediate target genes' expression, thus forming a complex transcriptional network ensuring plants' adaptation to dynamically changing light environments. This review summarizes and highlights the molecular and biochemical properties of BBXs, as well as recent advances with a focus on their critical regulatory functions in photomorphogenesis (de-etiolation), shade avoidance, photoperiodic-mediated flowering, and secondary metabolite biosynthesis and accumulation in plants.
View Article and Find Full Text PDFPlants have to cope with the surrounding changing environmental stimuli to optimize their physiological and developmental response throughout their entire life cycle. Light and temperature are two critical environmental cues that fluctuate greatly during day-night cycles and seasonal changes. These two external signals coordinately control the plant growth and development.
View Article and Find Full Text PDFJ Integr Plant Biol
November 2022
Light signaling precisely controls photomorphogenic development in plants. PHYTOCHROME INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) play critical roles in the regulation of this developmental process. In this study, we report CONSTITUTIVELY PHOTOMORPHOGENIC 1 SUPPRESSOR 6 (CSU6) functions as a key regulator of light signaling.
View Article and Find Full Text PDFFront Plant Sci
January 2022
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level.
View Article and Find Full Text PDFCONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mediates various cellular and physiological processes in plants by targeting a large number of substrates for ubiquitination and degradation. In this study, we reveal that a substitution of Pro for Leu at amino acid position 409 in WRKY32 largely suppresses the short hypocotyls and expanded cotyledon phenotypes of cop1-6. WRKY32 promotes hypocotyl growth and inhibits the opening of cotyledons in Arabidopsis.
View Article and Find Full Text PDFUnlabelled: phytochrome B (phyB) acts as the red light photoreceptor and negatively regulates the growth-promoting factor PHYTOCHROME INTERACTING 4 (PIF4) through a direct physical interaction, which in turn changes the expression of a large number of genes. phyB-PIF4 module regulates a variety of biological and developmental processes in plants. In this study, we demonstrate that B-BOX PROTEIN 11 (BBX11) physically interacts with both phyB and PIF4.
View Article and Find Full Text PDFLight is one of the key environmental cues controlling photomorphogenic development in plants. A group of B-box (BBX) proteins play critical roles in this developmental process through diverse regulatory mechanisms. In this study we report that BBX29 acts as a negative regulator of light signaling.
View Article and Find Full Text PDFJ Integr Plant Biol
September 2020
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development.
View Article and Find Full Text PDF