IEEE Trans Nanobioscience
June 2024
Human sperm functioning is crucial for maintaining natural reproduction, but its sterility is enhanced by variations in environmental conditions. Because of these agitating properties, powerful computer-aided devices are required, but their precision is inadequate, particularly when it comes to samples with low sperm concentrations. Therefore, for the first time, this article introduces the sulfide material-based structure for the detection of human sperm samples using the prism-based surface plasmon resonance sensor (SPR) Nano-biosensor.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
April 2023
Nowadays, Food additives and preservatives have become a hot topic especially formalin, which is a chemical substance used to preserve food. Chronic cancer is caused by swallowing the formalin-contaminated food on a regular basis. As a result, detection of the formalin in food ingredients is a critical need, and this requirement is becoming increasingly important in new terrains.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
April 2022
In this paper, we present the performance enhancement of the SPR biosensor using a novel dielectric material of thallium bromide (TIBr). The proposed structure comprised of six layers, including BK7 prism, silver (Ag), aluminum arsenide (AlAs), TIBr, black phosphorus (BP), and a sensing layer. In this investigation, we have considered four structures using the above-defined layers for the performance comparison and heightened the impact of TIBr in the proposed SPR sensor.
View Article and Find Full Text PDFA novel, to the best of our knowledge, surface plasmon resonance (SPR) sensor, employing a silicon-barium titanate structure for Pseudomonas bacterial detection, is designed. Three bacterial attachments operate as a protective layer for the detection process with refractive indices (RI) of 1.437, 1.
View Article and Find Full Text PDFIn the recent years, researchers have contributed substantially in the field of Surface Plasmon Resonance (SPR) sensors and its applications. SPR sensors show the salient features, such as label-free detection, real-time monitoring, small sample size, furnish accurate outcomes at low cost, and smooth handling. Moreover, the SPR sensors are also well-known because of its quantitative and qualitative excellent performance in real-time applications, including drug discovery, environment monitoring, food safety, medical diagnosis, clinical diagnosis, biological studies, and biomolecule interactions.
View Article and Find Full Text PDFWe present the performance enhancement of the surface plasmon resonance (SPR) sensor for deoxyribonucleic acid (DNA) hybridization employing black phosphorus (BP), silver (Ag), and silicon (Si) configurations and numerical analysis. The combination of Ag and BP demonstrates the sensitivity of 91.54°/RIU with degradation of detection accuracy (DA), quality factor (QF), and figure of merit (FOM).
View Article and Find Full Text PDF