Publications by authors named "Yesubabu Viswanadhapalli"

The abrupt reduction in the human activities during the first lockdown of the COVID-19 pandemic created unprecedented changes in the background atmospheric conditions. Several studies reported the anthropogenic and air quality changes observed during the lockdown. However, no attempts are made to investigate the lockdown effects on the Atmospheric Boundary Layer (ABL) and background instability processes.

View Article and Find Full Text PDF

The lockdown measures that were taken to combat the COVID-19 pandemic minimized anthropogenic activities and created natural laboratory conditions for studying air quality. Both observations and WRF-Chem simulations show a 20-50% reduction (compared to pre-lockdown and same period of previous year) in the concentrations of most aerosols and trace gases over Northwest India, the Indo Gangetic Plain (IGP), and the Northeast Indian regions. It is shown that this was mainly due to a 70-80% increase in the height of the boundary layer and the low emissions during lockdown.

View Article and Find Full Text PDF

In this study, the variability and trends of the outdoor thermal discomfort index (DI) in the Kingdom of Saudi Arabia (KSA) were analyzed over the 39-year period of 1980-2018. The hourly DI was estimated based on air temperature and relative humidity data obtained from the next-generation global reanalysis from the European Center for Medium-Range Weather Forecasts and in-house high-resolution regional reanalysis generated using an assimilative Weather Research Forecast (WRF) model. The DI exceeds 28°C, that is, the threshold for human discomfort, in all summer months (June to September) over most parts of the KSA due to a combination of consistently high temperatures and relative humidity.

View Article and Find Full Text PDF