Publications by authors named "Yesol Kang"

Ion exchange membranes, especially cation exchange membranes (CEMs), are an important component in membrane-based energy generation and storage because of their ability to transport cations via the electrochemical potential gradient while preventing electron transport. However, developing a CEM with low areal resistance, high permselectivity, and stability remains difficult. In this study, electrospun graphene oxide/polyethersulfone (GO/PES) composite nanofibers were prepared with varying concentrations of GO.

View Article and Find Full Text PDF

Laminar graphene oxide (GO) membranes have demonstrated great potential as next-generation water-treatment membranes because of their outstanding performance and physicochemical properties. However, solute rejection and stability deterioration in aqueous solutions, which are caused by enlarged nanochannels due to hydration and swelling, are regarded as serious issues in the use of GO membranes. In this study, we attempt to use the crosslinking of divalent cations to improve resistance against swelling in partially reduced GO membranes.

View Article and Find Full Text PDF
Article Synopsis
  • Membranes are effective at blocking harmful microorganisms, including viruses and bacteria, from air and water.
  • Adding antiviral and antibacterial nanoparticles to these membranes enhances their ability to not just filter, but also kill pathogens.
  • The article discusses how these advanced membrane filters are designed, the challenges faced in their development, and future possibilities for their use.
View Article and Find Full Text PDF

The wastewater-seawater (WW-SW) integrated reverse osmosis (RO) process has gained much attention in and out of academia due to its energy saving capability, economic benefits, and sustainability. The other advantage of this process is to reduce boron concentration in the RO permeate that can exclude the post-treatment process. However, there are multiple design constraints regarding boron removal that restrict process design in the WW-SW integrated system.

View Article and Find Full Text PDF

Membrane technologies are playing an ever-important role in the field of water treatment since water reuse and desalination were put in place as alternative water resources to alleviate the global water crisis. Recently, membranes are becoming more versatile and powerful with upgraded electroconductive capabilities, owing to the development of novel materials (e.g.

View Article and Find Full Text PDF

A loose nanofiltration (NF) membrane with excellent dye rejection and high permeation of inorganic salt is required to fractionate dye/salt mixture in dye wastewater treatment. In this study, we fabricated the loose NF membrane by using the electrospray interfacial polymerization (EIP) method. It is a novel and facile interfacial polymerization method, which controls the thickness of the poly(piperazine-amide) (PPA) layer in nanometers (1 nm/min) and changes cross-linking degree of PPA layer and pore size by varying the electrospray time; consequently, water permeance and dye/salt rejection ratio can be handled.

View Article and Find Full Text PDF

A novel polysulfone (PSf) nanocomposite ultrafiltration (UF) membrane using sulfonated graphene oxide (SGO) as additives was fabricated and investigated. SGO nanoparticles were chemically synthesized from graphene oxide (GO) by using sulfuric acid (HSO) and were confirmed by Raman and Fourier transform infrared (FTIR) spectroscopy. The morphology of prepared membranes was characterized by scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and atomic force microscopy (AFM).

View Article and Find Full Text PDF