Publications by authors named "Yesim Serinagaoglu"

Premature ventricular contractions (PVCs) are one of the most commonly targeted pathologies for ECGI validation, often through ventricular stimulation to mimic the ectopic beat. However, it remains unclear if such stimulated beats faithfully reproduce spontaneously occurring PVCs, particularly in the case of the R-on-T phenomenon. The objective of this study was to determine the differences in ECGI accuracy when reconstructing spontaneous PVCs as compared to ventricular-stimulated beats and to explore the impact of pathophysiological perturbation on this reconstruction accuracy.

View Article and Find Full Text PDF

Objective: Noninvasive electrocardiographic imaging (ECGI) is a promising tool for revealing crucial cardiac electrical events with diagnostic potential. We propose a novel nonparametric regression framework based on multivariate adaptive regression splines (MARS) for ECGI.

Methods: The inverse problem was solved by using the regression model trained with body surface potentials (BSP) and corresponding electrograms (EGM).

View Article and Find Full Text PDF

The usual goal in inverse electrocardiography (ECG) is to reconstruct cardiac electrical sources from body surface potentials and a mathematical model that relates the sources to the measurements. Due to attenuation and smoothing that occurs in the thorax, the inverse ECG problem is ill-posed and imposition of a priori constraints is needed to combat this ill-posedness. When the problem is posed in terms of reconstructing heart surface potentials, solutions have not yet achieved clinical utility; limitations include the limited availability of good a priori information about the solution and the lack of a "good" error metric.

View Article and Find Full Text PDF

In bioelectric inverse problems, one seeks to recover bioelectric sources from remote measurements using a mathematical model that relates the sources to the measurements. Due to attenuation and spatial smoothing in the medium between the sources and the measurements, bioelectric inverse problems are generally ill-posed. Bayesian methodology has received increasing attention recently to combat this ill-posedness, since it offers a general formulation of regularization constraints and additionally provides statistical performance analysis tools.

View Article and Find Full Text PDF

A persistent challenge in solving inverse problems in electrocardiography is the application of suitable constraints to the calculation of cardiac sources. Whether one formulates the inverse problem in terms of epicardial potentials or activation wavefronts, the problem is physically ill-posed and hence results in numerically unstable computations. Suitable physiological constraints applied with appropriate weighting can recover useful inverse solutions.

View Article and Find Full Text PDF