Publications by authors named "Yesenia Madrigal"

Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood.

View Article and Find Full Text PDF

The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors.

View Article and Find Full Text PDF

Researchers working on evolutionary developmental plant biology are inclined to choose non-model taxa to address how specific features have been acquired during ontogeny and fixed during phylogeny. In this chapter we describe methods to extract RNA, to assemble de-novo transcriptomes, to isolate orthologous genes within gene families, and to evaluate expression and function of target genes. We have successfully optimized these protocols for non-model plant species including ferns, gymnosperms, and a large assortment of angiosperms.

View Article and Find Full Text PDF

In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite roles, as AGL24 positively regulates flowering while SVP represses the reproductive transition in Arabidopsis.

View Article and Find Full Text PDF

Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots.

View Article and Find Full Text PDF

Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. () integrates several cues from different pathways acting as a flowering promoter.

View Article and Find Full Text PDF

Premise Of The Study: Bilateral symmetry in core eudicot flowers is established by the differential expression of CYCLOIDEA (CYC), DICHOTOMA (DICH), and RADIALIS (RAD), which are restricted to the dorsal portion of the flower, and DIVARICATA (DIV), restricted to the ventral and lateral petals. Little is known regarding the evolution of these gene lineages in non-core eudicots, and there are no reports on gene expression that can be used to assess whether the network predates the diversification of core eudicots.

Methods: Homologs of the RAD and DIV lineages were isolated from available genomes and transcriptomes, including those of three selected non-core eudicot species, the magnoliid Aristolochia fimbriata and the monocots Cattleya trianae and Hypoxis decumbens.

View Article and Find Full Text PDF

genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. and closely related genes (acronym for , and ) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.

View Article and Find Full Text PDF