Publications by authors named "Yershov G"

Past studies have suggested that thermal dissociation analysis of nucleic acids hybridized to DNA microarrays would improve discrimination among duplex types by scanning through a broad range of stringency conditions. To more fully constrain the utility of this approach using a previously described gel-pad microarray format, artificial neural networks (NNs) were trained to recognize noisy or low-quality data, as might derive from nonspecific fluorescence, poor hybridization, or compromised data collection. The NNs were trained to classify dissociation profiles (melts) into groups based on selected characteristics (e.

View Article and Find Full Text PDF

Oligonucleotide microarrays were used to profile directly extracted rRNA from environmental microbial populations without PCR amplification. In our initial inspection of two distinct estuarine study sites, the hybridization patterns were reproducible and varied between estuarine sediments of differing salinities. The determination of a thermal dissociation curve (i.

View Article and Find Full Text PDF

A generic oligodeoxyribonucleotide microchip was used to determine the sequence specificity of Hoechst 33258 binding to double-stranded DNA. The generic microchip contained 4096 oxctadeoxynucleo-tides in which all possible 4(6)= 4096 hexadeoxy-nucleotide sequences are flanked on both the 3'- and 5'-ends with equimolar mixtures of four bases. The microchip was manufactured by chemical immobilization of presynthesized 8mers within polyacrylamide gel pads.

View Article and Find Full Text PDF

A simple procedure for manufacturing microchips containing various gel-immobilized compounds is described. A gel photopolymerization technique is introduced to produce micromatrices of polyacrylamide gel pads (25 x 25 x 20 microm and larger) separated by a hydrophobic glass surface. A pin device for the manual application of a compound in solution onto the activated polyacrylamide gel pad for immobilization is described.

View Article and Find Full Text PDF

Diagnostics for genetic diseases were run and sequence analysis of DNA was carried out by hybridization of RNA transcripts with oligonucleotide array microchips. Polyacrylamide gel pads (100 x 100 x 20 microm) were fixed on a glass slide of the microchip and contained allele-specific immobilized oligonucleotides (10-mers). The RNA transcripts of PCR-amplified genomic DNA were fluorescently labeled by enzymatic or chemical methods and hybridized with the microchips.

View Article and Find Full Text PDF

The efficiency of sequencing by hybridization to an oligonucleotide microchip grows with an increase in the number and in the length of the oligonucleotides; however, such increases raise enormously the complexity of the microchip and decrease the accuracy of hybridization. We have been developing the technique of contiguous stacking hybridization (CSH) to circumvent these shortcomings. Stacking interactions between adjacent bases of two oligonucleotides stabilize their contiguous duplex with DNA.

View Article and Find Full Text PDF

We present a further development in the technology of sequencing by hybridization to oligonucleotide microchips (SHOM) and its application to diagnostics for genetic diseases. A robot has been constructed to manufacture sequencing "microchips." The microchip is an array of oligonucleotides immobilized into gel elements fixed on a glass plate.

View Article and Find Full Text PDF

A new technique of DNA sequencing by hybridization with oligonucleotide matrix (SHOM) which could also be applied for DNA mapping and fingerprinting, mutant diagnostics, etc., has been tested in model experiments. A dot matrix was prepared which contained 9 overlapping octanucleotides (8-mers) complementary to a common 17-mer.

View Article and Find Full Text PDF