Despite the large number of works on the synthesis of polylactide-co-glycolide (PLGA) nanoparticles (NP) loaded with antituberculosis drugs, the data on the influence of various factors on the final characteristics of the complexes are quite contradictory. In the present study, a comprehensive analysis of the effect of multiple factors, including the molecular weight of PLGA, on the size and stability of nanoparticles, as well as the loading efficiency and release of the antituberculosis drug rifampicin (RIF), was carried out. Emulsification was carried out using different surfactants (polyvinyl alcohol, Tween 80 and Pluronic F127), different aqueous-to-organic phase ratios, and different solvents (dichloromethane, dimethyl sulfoxide, ethyl acetate).
View Article and Find Full Text PDFIn this work, the possibility of preparation of copolymers of three-dimensional crosslinked structure based on polypropylene glycol fumarate and acrylic acid is shown. The initial reagent polypropylene glycol fumarate has been synthesized by polycondensation reaction of fumaric acid and propylene glycol. The curing process of polypropylene glycol fumarate and acrylic acid at various mole concentrations was studied using DSC method at isothermal and dynamic regimens.
View Article and Find Full Text PDFThe aim of this study was to create nanoparticles of human serum albumin immobilized with anti-TB drugs (rifampicin, isoniazid) using the desolvation method. Central Composite Design (CCD) was applied to study the effect of albumin, urea, L-cysteine, rifampicin and isoniazid concentration on particle size, polydispersity and loading degree of the drugs. The optimized nanoparticles were spherical in shape with an average particle size of 216.
View Article and Find Full Text PDFKinetics of thermal degradation of polymeric materials is usually studied by weight loss at a constant temperature or during heating. Hence, the activation energy and other kinetic parameters of the thermal destruction process are determined. One of the fastest and most accessible methods for studying the kinetics of these processes is TGA.
View Article and Find Full Text PDFStudies have shown the possibility of synthesizing new polymers based on polypropylene glycol maleate with acrylic acid in the presence of a RAFT agent (2-Cyano-2-propyl dodecyl trithiocarbonate CPDT). The effect of RAFT agent concentration on network density has been shown to be connected with product yield. Herein, the composition of the obtained copolymers was determined using FTIR spectrometry in combination with the chemometric method of partial least squares (or projection to latent structures).
View Article and Find Full Text PDFTuberculosis is one of the dangerous infectious diseases, killing over a million people worldwide each year. The search for new dosage forms for the treatment of drug-resistant tuberculosis is an actual task. Biocompatible polymer nanoparticles, in particular bovine serum albumin (BSA), are promising drug carriers.
View Article and Find Full Text PDFThis study describes the preparation of nanoparticles derived from bovine serum albumin (BSA) in comparison with the formation of nanoparticles composed of human serum albumin (HSA), when the same preparation procedure was used in both cases. To obtain protein nanoparticles, the method of desolvation with ethanol was employed, followed by the stabilization with urea and cysteine. It was shown that, upon transition from HSA to BSA, the particles with smaller sizes and with a narrower polydispersity were formed.
View Article and Find Full Text PDFHuman serum albumin nanoparticles (HSA-NPs) have been widely used as drug delivery systems. In most cases, HSA-NPs are formed by the method of desolvation in the presence of glutaraldehyde as a crosslinking agent. In the present study, we showed the possibility of crosslinking human serum albumin (HSA) molecules with natural agents, urea, and cysteine at the nanoparticle level under mild conditions (at room temperature of 20-25 °C).
View Article and Find Full Text PDF