Publications by authors named "Yerim Kwon"

The cell-derived vesicles (CDVs) obtained using a proprietary extrusion process are the foundation of BioDrone platform technology. With superior productivity and versatility, this technology has garnered increasing attention in broad applications, particularly as a drug delivery vehicle. Previously, we showed that CDVs exhibited varying levels of expression for tetraspanin and organelle membrane markers while revealing no discernible differences in physical characteristics compared to naturally produced extracellular vesicles (EVs).

View Article and Find Full Text PDF

Background: Although an effective vaccine has been available, measles still causes mast morbidity and mortality world widely. In Korea, a small number of measles cases have been reported through exposure to imported cases among young people with vaccine-induced measles immunity. Recently due to international migration including marriage, marriage migrants were the second-largest group of foreign population in Korea.

View Article and Find Full Text PDF

Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module.

View Article and Find Full Text PDF

In the model plant Arabidopsis thaliana, four Dicer-like proteins (DCL1-4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII-like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4-dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling.

View Article and Find Full Text PDF

Double-stranded RNA binding (DRB) proteins are generally considered as promoting cofactors of Dicer or Dicer-like (DCL) proteins that ensure efficient and precise production of small RNAs, the sequence-specificity guide of RNA silencing processes in both plants and animals. However, the characterization of a new clade of DRB proteins in Arabidopsis has recently challenged this view by showing that DRBs can also act as potent inhibitors of DCL processing. This is achieved through sequestration of a specific class of small RNA precursors, the endogenous inverted-repeat (endoIR) dsRNAs, thereby selectively preventing production of their associated small RNAs, the endoIR-siRNAs.

View Article and Find Full Text PDF

In plants, several dsRNA-binding proteins (DRBs) have been shown to play important roles in various RNA silencing pathways, mostly by promoting the efficiency and/or accuracy of Dicer-like proteins (DCL)-mediated small RNA production. Among the DRBs encoded by the Arabidopsis genome, we recently identified DRB7.2 whose function in RNA silencing was unknown.

View Article and Find Full Text PDF

BRI1-Associated Receptor Kinase 1 (BAK1) is a leucine-rich repeat serine/threonine receptor-like kinase (LRR-RLK) that is involved in multiple developmental pathways, such as brassinosteroid (BR) signaling, plant immunity and cell death control in plants. Because the roundish and compact rosette leaves of bak1 mutant plants are characteristic phenotypes for deficient BR signaling, we screened genetic suppressors of bak1 according to changes in leaf shape to identify new components that may be involved in BAK1-mediated BR signaling using the activation-tagging method. Here, we report bak1-SUP1, which exhibited longer and narrower rosette leaves and an increased BR sensitivity compared with those of bak1.

View Article and Find Full Text PDF

Critical responses to developmental or environmental stimuli are mediated by different transcription factors, including members of the ERF, bZIP, MYB, MYC, and WRKY families. Of these, MYB genes play roles in many developmental processes. The overexpression of one MYB gene, MYBH, significantly increased hypocotyl elongation in Arabidopsis thaliana plants grown in the light, and the expression of this gene increased markedly in the dark.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small regulatory RNAs that have important regulatory roles in numerous developmental and metabolic processes in most eukaryotes. In Arabidopsis, DICER-LIKE1 (DCL1), HYPONASTIC LEAVES 1, SERRATE, HUA ENHANCER1 and HASTY are involved in processing of primary miRNAs (pri-miRNAs) to yield precursor miRNAs (pre-miRNAs) and eventually miRNAs. In addition to these components, mRNA cap-binding proteins, CBP80/ABA HYPERSENSITIVE1 and CBP20, also participate in miRNA biogenesis.

View Article and Find Full Text PDF

Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase.

View Article and Find Full Text PDF

In response to environmental challenges, plant cells activate several signaling pathways that trigger the expression of transcription factors. Arabidopsis MYB60 was reported to be involved in stomatal regulation under drought conditions. Here, two splice variants of the MYB60 gene are shown to play a crucial role in stomatal movement.

View Article and Find Full Text PDF

In an attempt to understand the complex regulatory mechanisms underlying sucrose-induced flavonoid biosynthesis, we examined several Arabidopsis mutants with altered anthocyanin accumulation. We determined that disruption of ethylene signaling results in a dramatic increase in sucrose-induced anthocyanin accumulation. Furthermore, we investigated why the ein2-1 (ethylene insensitive) Arabidopsis mutant accumulates higher levels of anthocyanin in response to sucrose than wild-type Arabidopsis.

View Article and Find Full Text PDF

Ras super family proteins serve as molecular switches regulating many different cellular processes. However, given the large number of family members, sequence information has provided little insight into the function of individual proteins. This study examined phenotypic alterations in an Arabidopsis ara2 mutant, in which a Ras super family member-encoding gene is disrupted by a T-DNA insertion.

View Article and Find Full Text PDF

The Arabidopsis hot2 mutant was originally identified based on its lack of thermotolerance, but pleiotropic abnormal phenotypes are also exhibited under normal conditions, including semi-dwarfism, ethylene overproduction and aberrant cell shape with incomplete cell walls. Here we present additional characterization of the hot2 mutant, and the map-based cloning of HOT2. Mutants of hot2 had an aberrant tolerance to salt and drought stresses, and accumulated high levels of Na(+) in cells under either normal or NaCl stress conditions.

View Article and Find Full Text PDF