Publications by authors named "Yeqian Chang"

Organophosphorus flame retardants (OPFRs) are frequently detected in food and human samples, and epidemiological studies have found that human exposure to aryl-OPFRs (triphenyl phosphate, TPP) is associated with lipid metabolism. Although toxicity studies suggest a potential obesity risk from TPP exposure, the molecular mechanism remains unclear. This study investigated the subchronic dietary effects on mouse liver significantly changed proteins (SCPs) and elucidated the underlying molecular mechanisms of TPP with or without a high-fructose and high-fat (HFF) diet.

View Article and Find Full Text PDF

Exposure of humans to organophosphate flame retardants (OPFRs) and the consequent health risk have increased owing to the latter's widespread application. Although triphenyl phosphate (TPP), an OPFR, is a potential chemical determinant of liver function damage, its effects on kidney function in mice under high fructose/fat (HFF) diet are still unclear. In this study, C57BL/6J mice were fed HFF to generate an obesity model and mice were exposed to low dose (0.

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) have become a growing concern due to their potential environmental and health risk. However, limited studies have described the toxicity, particularly neurotoxicity of alkyl and aromatic OPFRs. This study investigated the neurotoxicity of alkyl tri-n-butyl phosphate (TnBP) and aromatic tricresyl phosphate (TCP) to rat adrenal pheochromocytoma (PC12) cells for 24 h.

View Article and Find Full Text PDF

Microplastics are plastic fragments of particle sizes less than 5 mm, which are widely distributed in marine and terrestrial environments. In this study, earthworms Eisenia fetida were exposed to 100 and 1000 μg of 100 nm and 1300 nm fluorescent polystyrene microplastics (PS-MPs) per kg of artificial soil for 14 days. Uptake or accumulation of PS-MPs in earthworm intestines, histopathological changes, oxidative stress, and DNA damage were assessed to determine the toxicological effects of PS-MPs on E.

View Article and Find Full Text PDF

Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity.

View Article and Find Full Text PDF