Unlabelled: can colonize a wide variety of environments (e.g., freshwater, brackish, alkaline, or alkaline-saline water) and develop dominant and even permanent blooms that overshadow and limit the diversity of adjacent phototrophs, especially in alkaline and saline environments.
View Article and Find Full Text PDFWith the increasing integration of nanomaterials into daily life, the potential ecotoxicological impacts of nanoparticles (NPs) have attracted increased attention from the scientific community. This study assessed the ecotoxicity of ZnS quantum dots (QDs) doped with varying molar concentrations of Mn on . The ZnS:Mn QDs were synthesized using the polyol method.
View Article and Find Full Text PDFThe Joanes I Reservoir is responsible for 40% of the drinking water supply of the Metropolitan Region of Salvador, Bahia, Brazil. For water sources such as this, there is concern regarding the proliferation of potentially toxin-producing cyanobacteria, which can cause environmental and public health impacts. To evaluate the presence of cyanobacteria and their cyanotoxins in the water of this reservoir, the cyanobacteria were identified by microscopy; the presence of the genes of the cyanotoxin-producing cyanobacteria was detected by molecular methods (polymerase chain reaction (PCR)/sequencing); and the presence of toxins was determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS).
View Article and Find Full Text PDFCyanobacterial blooms can modify the dynamic of aquatic ecosystems and have harmful consequences for human activities. Moreover, cyanobacteria can produce a variety of cyanotoxins, including microcystins, but little is known about the role of environmental factors on the prevalence of microcystin producers in the cyanobacterial bloom dynamics. This study aimed to better understand the success of Planktothrix in various environments by unveiling the variety of strategies governing cell responses to sudden changes in light intensity and temperature.
View Article and Find Full Text PDFCyanobacteria are able to synthesize a high diversity of natural compounds that account for their success in the colonization of a variety of ecological niches. Many of them have beneficial properties. The mud from the thermal baths of Balaruc-Les-Bains, one of the oldest thermal baths in France, has long been recognized as a healing treatment for arthro-rheumatic diseases.
View Article and Find Full Text PDFThe Balaruc-les-Bains' thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications.
View Article and Find Full Text PDFThe filamentous chlorophyte Ostreobium sp. dominates shallow marine carbonate microboring communities, and is one of the major agents of reef bioerosion. While its large genetic diversity has emerged, its physiology remains little known, with unexplored relationship between genotypes and phenotypes (endolithic versus free-living growth forms).
View Article and Find Full Text PDFSeine river water was used as natural environmental medium to study the ecotoxicological impact of ZnO and CdS nanoparticles and Zn and Cd free ions using as a biological target. It was demonstrated by viability tests and photosynthetic activity measurements that free Zn ( = 2.7 × 10 M) is less toxic than free Cd and ZnO nanoparticles ( = 1.
View Article and Find Full Text PDFEfficient RNA extraction methods are needed to study transcript regulation. Such methods must lyse the cell without degrading the genetic material. For cyanobacteria this can be particularly challenging because of the presence of the cyanobacteria cell envelope.
View Article and Find Full Text PDFEvaluating the causes and consequences of dominance by a limited number of taxa in phytoplankton communities is of huge importance in the current context of increasing anthropogenic pressures on natural ecosystems. This is of particular concern in densely populated urban areas where usages and impacts of human populations on water ecosystems are strongly interconnected. Microbial biodiversity is commonly used as a bioindicator of environmental quality and ecosystem functioning, but there are few studies at the regional scale that integrate the drivers of dominance in phytoplankton communities and their consequences on the structure and functioning of these communities.
View Article and Find Full Text PDFPhotosynthetic organisms need to sense and respond to fluctuating environmental conditions, to perform efficient photosynthesis and avoid the formation of harmful reactive oxygen species. Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome, the extramembranal light-harvesting antenna. This mechanism is triggered by the photoactive orange carotenoid protein (OCP).
View Article and Find Full Text PDFPhylogenetic relationships among heterocytous genera (the Nostocales order) have been profoundly modified since the use of polyphasic approaches that include molecular data. There is nonetheless still ample scope for improving phylogenetic delineations of genera with broad ecological distributions, particularly by integrating specimens from specific or up-to-now poorly sampled habitats. In this context, we studied 36 new isolates belonging to Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, and Cylindrospermopsis from freshwater ecosystems of Burkina-Faso, Senegal, and Mayotte Island.
View Article and Find Full Text PDFCyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity.
View Article and Find Full Text PDFArch Environ Contam Toxicol
November 2017
Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum.
View Article and Find Full Text PDFOptical biosensors for the detection of toxic species in aqueous media were developed via the encapsulation of microalgae in sol-gel matrices. In a first step, the effect of cadmium(II), lead(II), and anthracene on the chlorophyll a fluorescence intensity of Anabaena flos-aquae, Chlorella vulgaris, and Euglena gracilis microalgae in suspension was studied. Complementary ATP-metry measurements demonstrated a direct relationship between optical response and pollutant toxicity, in a cell- and dose-dependent manner.
View Article and Find Full Text PDFSilicates-in-silica nanocomposite hydrogels obtained from sodium silicates/colloidal silica mixtures have previously been found to be useful for bacterial encapsulation. However the extension of synthesis conditions and the understanding of their impact on the silica matrix would widen the applicability of this process in terms of encapsulated organisms and the host properties. Here the influence of silicates and the colloidal silica concentration as well as pH conditions on the gel time, the optical properties, the structural and mechanical properties of silica matrices was studied.
View Article and Find Full Text PDFRecently, cellulose nanofibers (CNFs) have attracted considerable attention as natural, abundant polymers with excellent mechanical properties and biodegradability. CNFs provide a new materials platform for the sustainable production of high-performance nano-enable products for various applications. Given the increasing rates of CNF production, the potential for their release to the environment and the subsequent impact on ecosystem is becoming an increasing concern that needs to be addressed.
View Article and Find Full Text PDFStudies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology.
View Article and Find Full Text PDFThe interaction between live organisms and micro- or nanosized materials has become a current focus in toxicology. As nanosized barium titanate has gained momentum lately in the medical field, the aims of the present work are: (i) to assess BT toxicity and its mechanisms on the aquatic environment, using two photosynthetic organisms (Anabaena flos-aquae, a colonial cyanobacteria, and Euglena gracilis, a flagellated euglenoid); (ii) to study and correlate the physicochemical properties of BT with its toxic profile; (iii) to compare the BT behavior (and Ba(2+) released ions) and the toxic profile in synthetic (Bold's Basal, BB, or Mineral Medium, MM) and natural culture media (Seine River Water, SRW); and (iv) to address whether size (micro, BT MP, or nano, BT NP) is an issue in BT particles toxicity. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic efficiency were evaluated.
View Article and Find Full Text PDFBackground: MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris.
View Article and Find Full Text PDFThis work aims at characterizing organic matter produced by an alga Euglena gracilis and a cyanobacteria Microcystis aeruginosa and assessing the evolution of its characteristics during growth. A culture medium was optimized. The species growth phases were monitored using both visible spectrophotometry and flow cytometry cell counting.
View Article and Find Full Text PDFAlthough microscope analysis is very useful for studying phytoplankton community composition, it does not allow for high frequency (spatial and/or temporal) data acquisition. In an attempt to overcome this issue, fluorescence-based approaches that use selective excitation of pigment antennae have spread rapidly. However, the ability of spectral fluorescence to provide accurate estimates of phytoplankton biomass and composition is still debated, and only a few datasets have been tested to date.
View Article and Find Full Text PDFThe intracellular biosynthesis of superparamagnetic (blocking temperature 5.6K) 2-lines ferrihydrite (Fh2L) nanoparticles was observed within living Euglena gracilis microalgae.
View Article and Find Full Text PDFTargeting the development of cell-based bioreactors for the production of metal nanoparticles, the possibility to perform the sustained synthesis of colloidal gold using Klebsormidium flaccidum green algae was studied. A first strategy relying on successive growth/reduction/reseeding recycling steps demonstrated maintained biosynthesis capability of the microalgae but limitation in metal content due to toxic effects. An alternative approach consisting of progressive gold salt addition revealed to be suitable to favor cell adaptation to larger metal concentrations and supported particle release over month periods.
View Article and Find Full Text PDFAs previously demonstrated the medaka fish appears to offer a good model for studies of microcystins (MCs) effects. Since cyanobacterial toxins are released with other molecules in the aquatic environment when the producers are dying, in this study, we performed additional experiments in order to compare the described effects obtained with the pure toxin microcystin-LR (MC-LR), among the most toxic MCs, to those induced by complex extracts of an MCs-producer Planktothrix agardhii, strain PMC 75.02 and a natural bloom containing the MCs-producer P.
View Article and Find Full Text PDF