Introduction: Rheumatoid arthritis (RA) is a chronic destructive inflammatory disease that afflicts over one percent of the world's population. Current pharmacological treatments remain relatively ineffective. In this context, photobiomodulation (PBM) is a potential resource for the treatment of RA.
View Article and Find Full Text PDFMembrane-free stem cell extract (MFSCE) of human adipose tissues possesses various biological activities. However, the effects of MFSCE on blood-brain barrier dysfunction and brain damage are unknown. In this study, we determined the role of MFSCE in an ischemic stroke mouse model.
View Article and Find Full Text PDFThe beneficial effects of light-emitting diode (LED) irradiation have been reported in various pathologies, including cancer. However, its effect in pancreatic cancer cells remains unclear. Herein, we demonstrated that blue LED of 460 nm regulated pancreatic cancer cell proliferation and apoptosis by suppressing the expression of apoptosis-related factors, such as mutant p53 and B-cell lymphoma 2 (Bcl-2), and decreasing the expression of RAC-β serine/threonine kinase 2 (AKT2), the phosphorylation of protein kinase B (AKT), and mammalian target of rapamycin (mTOR).
View Article and Find Full Text PDFOxidative stress and inflammation are key pathways responsible for the pathogenesis of asthma. Aquatic exercise (AE) has been proven to elicit a variety of biological activities such as anti-oxidant and anti-inflammatory effects. However, although proper forms of AE provide beneficial health effects, incorrect forms and types of AE are potentially injurious to health.
View Article and Find Full Text PDFSnail, a zinc-finger transcriptional repressor of E-cadherin expression, is one of the key inducers of epithelial-mesenchymal transition (EMT) in epithelial cancer. In breast cancer, EMT has been associated with malignancies, including metastasis, cancer stem-like properties, and resistance to chemotherapy and radiotherapy. In this study, we analysed the role of Snail in the highly metastatic mesenchymal TUBO‑P2J mouse breast cancer cells, by loss of function using short hairpin RNA.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) has a significant role in the response to injury and tissue repair, and it has been detected in various cell types. However, the mechanism by which it regulates the response to ischemia‑reperfusion injury (IRI) and manipulates natural killer (NK) cells is not well understood. In the present study, TGF‑β modulated NK cell function, thereby promoting recovery from renal IRI.
View Article and Find Full Text PDFAims: Ischemia/reperfusion injury (IRI), resulting from hypoxic damage within a graft, is the leading cause of cell death and graft rejection. In this study, we investigated whether a HIF-1α inhibitor or various antioxidants were able to prevent ischemic injury in a cellular model in which experimental hypoxia was induced using CoCl2.
Main Methods: The ischemic injury induced in HK-2 cells by CoCl2 was validated by increased reactive oxygen species (ROS) production, reduced cell viability, and increased apoptosis at different times and doses.