Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells.
View Article and Find Full Text PDFMethane flux (FCH ) measurements using the eddy covariance technique have increased over the past decade. FCH measurements commonly include data gaps, as is the case with CO and energy fluxes. However, gap-filling FCH data are more challenging than other fluxes due to its unique characteristics including multidriver dependency, variabilities across multiple timescales, nonstationarity, spatial heterogeneity of flux footprints, and lagged influence of biophysical drivers.
View Article and Find Full Text PDFHigh-resolution single-cell imaging in their native or near-native state has received considerable interest for decades. In this research, we present an innovative approach that can be employed to study both morphological and nano-mechanical properties of hydrated single bacterial cells. The proposed strategy is to encapsulate wet cells with monolayer graphene with a newly developed water membrane approach, followed by imaging with both electron microscopy (EM) and atomic force microscopy (AFM).
View Article and Find Full Text PDFThe nano-manipulation approach that combines Focused Ion Beam (FIB) milling and various imaging and probing techniques enables researchers to investigate the cellular structures in three dimensions. Such fusion approach, however, requires extensive effort on locating and examining randomly-distributed targets due to limited Field of View (FOV) when high magnification is desired. In the present study, we present the development that automates 'pattern and probe' particularly for single-cell analysis, achieved by computer aided tools including feature recognition and geometric planning algorithms.
View Article and Find Full Text PDF