Nanoparticle decoration on carbon nanotubes was employed to modulate their electrical conductance and thermopower and thereby improved the thermoelectric power factor. Nanotubes were made into films by spraying nanotube solutions on glass substrates, and then the films were immersed in different concentrations of CuSO(4) or HAuCl(4) solutions for various time periods. Copper ions in the solutions were reduced on nanotubes by obtaining electrons from zinc electrodes, whose reduction potential is lower than that of copper (galvanic displacement).
View Article and Find Full Text PDFWire- and belt-like single-crystalline titanium dioxide nanostructures were synthesized by using a simple thermal annealing method, which has often been avoided for the synthesis of metal oxide nanostructures from high melting point metals such as Ti. The synthesis method requires neither high reaction temperature nor complicated reaction processes, and can be used for producing dense nanomaterials with relatively short reaction time at temperatures much lower than the melting point of titanium and titanium dioxide. Key synthesis factors including the choice of eutectic catalyst, growth temperature, and annealing time were systematically investigated.
View Article and Find Full Text PDFTime-resolved fluorescence spectroscopy (TRFS) is a powerful analytical tool for quantifying the biochemical composition of organic and inorganic materials. The potential of TRFS for tissue diagnosis has been recently demonstrated. To facilitate the translation of TRFS to the clinical arena, algorithms for online TRFS data analysis are essential.
View Article and Find Full Text PDF