Publications by authors named "Yeonmi Lee"

Allogeneic natural killer (NK) cell therapy has been effective in treating cancer. Many studies have tested NK cell therapy using human pluripotent stem cells (hPSCs). However, the impacts of the origin of PSC-NK cells on competence are unclear.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a serious chronic lung disease affecting extremely preterm infants. While mitochondrial dysfunction has been investigated in various medical conditions, limited research has explored mitochondrial DNA (mtDNA) gene mutations, specifically in BPD. This study aimed to evaluate mitochondrial mtDNA gene mutations in extremely preterm infants with BPD.

View Article and Find Full Text PDF

Graphislactone A (GPA), a secondary metabolite derived from a mycobiont found in the lichens of the genus Graphis, exhibits antioxidant properties. However, the potential biological functions and therapeutic applications of GPA at the cellular and animal levels have not yet been investigated. In the present study, we explored the therapeutic potential of GPA in mitigating non-alcoholic fatty liver disease (NAFLD) and its underlying mechanisms through a series of experiments using various cell lines and animal models.

View Article and Find Full Text PDF

Introduction: Regdanvimab, a neutralising monoclonal antibody (mAb) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), received approval for the treatment of coronavirus disease 2019 (COVID-19) in South Korea in 2021. The Ministry of Food and Drug Safety in South Korea mandate that new medications be re-examined for safety and effectiveness post-approval in at least 3000 individuals. This post-marketing surveillance (PMS) study was used to evaluate the safety and effectiveness of regdanvimab in real-world clinical care.

View Article and Find Full Text PDF

Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation.

View Article and Find Full Text PDF

Range of DNA repair in response to double-strand breaks induced in human preimplantation embryos remains uncertain due to the complexity of analyzing single- or few-cell samples. Sequencing of such minute DNA input requires a whole genome amplification that can introduce artifacts, including coverage nonuniformity, amplification biases, and allelic dropouts at the target site. We show here that, on average, 26.

View Article and Find Full Text PDF

Background: Gut microbiota provide numerous types of metabolites that humans cannot produce and have a huge influence on the host metabolism. Accordingly, gut bacteria-derived metabolites can be employed as a resource to develop anti-obesity and metabolism-modulating drugs.

Objective: This study aimed to examine the anti-adipogenic effect of 3-phenylpropionylglycine (PPG), which is a glycine conjugate of bacteria-derived 3-phenylpropionic acid (PPA).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on patient-derived induced pluripotent stem cells (iPSCs) from Alzheimer's disease (AD) patients to explore mitochondrial DNA (mtDNA) mutations and their effects on neuronal function.
  • Researchers found that iPSCs from AD patients had significantly more mtDNA mutations than those from umbilical cord blood, affecting mitochondrial performance and contributing to β-amyloid (Aβ) accumulation.
  • The results highlight the importance of screening mtDNA mutations in iPSC lines, as these mutations could lead to mitochondrial dysfunction and inform potential therapies for Alzheimer's disease.
View Article and Find Full Text PDF

Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart.

View Article and Find Full Text PDF

A high-fat diet increases 12α-hydroxylated (12αOH) bile acid (BA) secretion in rats, and secondary BAs are responsible for the leaky gut. This study aimed to examine the role of primary 12αOH BAs in gut barrier impairment in rats using dietary cholic acid (CA) supplementation (0.5 g/kg diet).

View Article and Find Full Text PDF

Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary.

View Article and Find Full Text PDF

Cells transmit their genomes vertically to daughter cells during cell divisions. Here, we demonstrate the occurrence and extent of horizontal mitochondrial (mt)DNA acquisition between cells that are not in a parent-offspring relationship. Extensive single-cell sequencing from various tissues and organs of adult chimeric mice composed of cells carrying distinct mtDNA haplotypes showed that a substantial fraction of individual cardiomyocytes, neurons, glia, intestinal, and spleen cells captured donor mtDNA at high levels.

View Article and Find Full Text PDF

Haploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN).

View Article and Find Full Text PDF

Background: Amnion-derived mesenchymal stem cells (AM-MSCs) are an attractive source of stem cell therapy for patients with irreversible liver disease. However, there are obstacles to their use due to low efficiency and xeno-contamination for hepatic differentiation.

Methods: We established an efficient protocol for differentiating AM-MSCs into hepatic progenitor cells (HPCs) by analyzing transcriptome-sequencing data.

View Article and Find Full Text PDF

Mitochondria are essential organelles that are not only responsible for energy production but are also involved in cell metabolism, calcium homeostasis, and apoptosis. Targeting mitochondria is a key strategy for bacteria to subvert host cells' physiology and promote infection. targets mitochondria directly.

View Article and Find Full Text PDF

Defects in the mitochondrial genome (mitochondrial DNA (mtDNA)) are associated with both congenital and acquired disorders in humans. Nuclear-encoded DNA polymerase subunit gamma () plays an important role in mtDNA replication, and proofreading and mutations in have been linked with increased mtDNA deletions. is also a crucial gene for mtDNA replication.

View Article and Find Full Text PDF

Study Question: What are the long-term developmental, reproductive and genetic consequences of mitochondrial replacement therapy (MRT) in primates?

Summary Answer: Longitudinal investigation of MRT rhesus macaques (Macaca mulatta) generated with donor mtDNA that is exceedingly distant from the original maternal counterpart suggest that their growth, general health and fertility is unremarkable and similar to controls.

What Is Known Already: Mitochondrial gene mutations contribute to a diverse range of incurable human disorders. MRT via spindle transfer in oocytes was developed and proposed to prevent transmission of pathogenic mtDNA mutations from mothers to children.

View Article and Find Full Text PDF

Over a hundred billion bacteria are found in human intestines. This has emerged as an environmental factor in metabolic diseases, such as obesity and related diseases. The majority of these bacteria belong to two dominant phyla, Bacteroidetes and Firmicutes.

View Article and Find Full Text PDF

Background: Inbred strains are characterized by less genetic variation, which suggests usefulness of inbred strains for evaluations of various parameters. In this study, experimental reproducibility in several parameters was compared between an outbred Wistar rat and Wistar King A Hokkaido (WKAH/HkmSlc) rat, the inbred strain that is originated from Wistar rats.

Methods: Difference of variations was investigated in parameters of body compositions and liver functions such as body weight, liver weight, liver triglycerides (TG), liver cholesterol and plasma alanine aminotransferase activity (ALT) between WKAH rats and outbred Wistar rats by using the coefficient of variation (CV).

View Article and Find Full Text PDF

Poor survival of human pluripotent stem cells (hPSCs) following freezing, thawing, or passaging hinders the maintenance and differentiation of stem cells. Rho-associated kinases (ROCKs) play a crucial role in hPSC survival. To date, a typical ROCK inhibitor, Y-27632, has been the primary agent used in hPSC research.

View Article and Find Full Text PDF

Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring.

View Article and Find Full Text PDF

Whole exome sequencing (WES) is an effective tool for the genetic diagnosis of mitochondrial disorders due to various nuclear genetic defects. In this study, three patients affected by extremely rare mitochondrial disorders caused by nuclear genetic defects are described. The medical records of each patient were reviewed to obtain clinical symptoms, results of biochemical and imaging studies, and muscle biopsies.

View Article and Find Full Text PDF

Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases.

View Article and Find Full Text PDF

Ethical and safety issues have rendered mesenchymal stem cells (MSCs) popular candidates in regenerative medicine, but their therapeutic capacity is lower than that of induced pluripotent stem cells (iPSCs). This study compared original, dental tissue-derived MSCs with re-differentiated MSCs from iPSCs (iPS-MSCs). CD marker expression in iPS-MSCs was similar to original MSCs.

View Article and Find Full Text PDF

Change history In this Letter, there are several errors regarding the assignments of mtDNA haplotypes for a subset of egg donors from our study. These errors have not been corrected online.

View Article and Find Full Text PDF