Interleukin-2-inducible tyrosine kinase (ITK) is a crucial cytoplasmic protein in the T-cell signaling pathway. Here, we aimed to demonstrate the anti-inflammatory effect of the selective IL-2-induced tyrosine kinase inhibitor BMS-509744 (BMS) on Graves' orbitopathy (GO) in an in vitro model. ITK mRNA expression in orbital tissues from GO and normal controls was compared using real-time polymerase chain reaction (RT-PCR) and immunohistochemistry.
View Article and Find Full Text PDFYKL-40, a chitinase-3-like protein 1 (CHI3L1) or human cartilage glycoprotein 39 (HC gp-39), is expressed and secreted by various cell-types including macrophages, chondrocytes, fibroblast-like synovial cells and vascular smooth muscle cells. Its biological function is not well elucidated, but it is speculated to have some connection with inflammatory reactions and autoimmune diseases. Although having important biological roles in autoimmunity, there were only attempts to elucidate relationships of YKL-40 with a single or couple of diseases in the literature.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
May 2020
Purpose: In Graves' orbitopathy (GO), hyaluronan secreted by orbital fibroblasts contributes to orbital tissue expansion. The goal of this research was to evaluate the potential benefit of 4-methylumbelliferone (4-MU), a hyaluronan synthase (HAS) inhibitor, in primary cultured orbital fibroblasts from Graves' orbitopathy.
Methods: We assessed the viability of orbital fibroblasts using a live/dead cell assay.
Hard-shell case: Using a (RKK)4 D8 peptide allows mineralization to occur under cytocompatible conditions. Thus individual Chlorella cells could be encapsulated within a SiO2 -TiO2 nanoshell with high cell viability (87 %). The encapsulated Chlorella showed an almost threefold increase in their thermo-tolerance after 2 h at 45 °C.
View Article and Find Full Text PDF