Dulaglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is widely used to treat diabetes. However, its effects on muscle wasting due to aging are poorly understood. In the current study, we investigated the therapeutic potential and underlying mechanism of dulaglutide in muscle wasting in aged mice.
View Article and Find Full Text PDFBackground: Islet transplantation might be a logical strategy to restore insulin secretion for the treatment of diabetes, however, the scarcity of donors poses an obstacle for such a treatment. As an alternative islet source, differentiation of stem cells into insulin-producing cells (IPCs) has been tried. Many protocols have been developed to improve the efficiency of differentiation of stem cells into IPCs.
View Article and Find Full Text PDFThe loss of pancreatic β-cells is a cause of diabetes. Therefore, replacement of pancreatic β-cells is a logical strategy for the treatment of diabetes, and the generation of insulin-producing cells (IPCs) from stem cells has been widely investigated as an alternative source for pancreatic β-cells. Here, we isolated stem cells from human urine and investigated their differentiation potential into IPCs.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
August 2019
Background: Skeletal muscle atrophy is defined as a reduction of muscle mass caused by excessive protein degradation. However, the development of therapeutic interventions is still in an early stage. Although glucagon-like peptide-1 receptor (GLP-1R) agonists, such as exendin-4 (Ex-4) and dulaglutide, are widely used for the treatment of diabetes, their effects on muscle pathology are unknown.
View Article and Find Full Text PDFElectrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC).
View Article and Find Full Text PDFEthnopharmacological Relevance: Melissa officinalis L. (Labiatae; lemon balm) has been used traditionally and contemporarily as an anti-stress herb. Current hypotheses suggest that not only chronic stress promotes angiogenesis, but angiogenesis also modulates adipogenesis and obesity.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) are produced by various pathogenic Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. In this study, we isolated OMVs from a representative soil bacterium, Pseudomonas putida KT2440, which has a biodegradative activity toward various aromatic compounds. Proteomic analysis identified the outer membrane proteins (OMPs) OprC, OprD, OprE, OprF, OprH, OprG, and OprW as major components of the OMV of P.
View Article and Find Full Text PDFBackground & Aims: Endoplasmic reticulum (ER) stress is implicated in the development of type 2 diabetes mellitus. ER stress activates the unfolded protein response pathway, which contributes to apoptosis and insulin resistance. We investigated the roles of cytochrome P450 4A (CYP4A) in the regulation of hepatic ER stress, insulin resistance, and the development of diabetes in mice.
View Article and Find Full Text PDFThe identification of novel diagnostic markers of pathogenic bacteria is essential for improving the accuracy of diagnoses and for developing targeted vaccines. Streptococcus pneumoniae is a significant human pathogenic bacterium that causes pneumonia. N-acetylglucosamine-6-phosphate deacetylase (NagA) was identified in a protein mixture secreted by S.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is the most prevalent and serious metabolic disease affecting people worldwide. T2DM results from insulin resistance of the liver, muscle, and adipose tissue. In this study, we used proteomic and bioinformatic methodologies to identify novel hepatic membrane proteins that are related to the development of hepatic insulin resistance, steatosis, and T2DM.
View Article and Find Full Text PDFType 2 diabetes is a chronic metabolic disease that results from insulin resistance in the liver, muscle, and adipose tissue and relative insulin deficiency. The endoplasmic reticulum (ER) plays a crucial role in the regulation of the cellular response to insulin. Recently, ER stress has been known to reduce the insulin sensitivity of the liver and lead to type 2 diabetes.
View Article and Find Full Text PDFMicrotubules are a component of the cytoskeleton and are important for maintaining cell structure and providing platforms for intracellular transport in diverse cellular processes. Microtubule plus-end tracking proteins (+TIPs), a structurally and functionally diverse group of proteins, are specifically accumulated in the microtubule plus end and regulate dynamic microtubule behavior. We characterized the +TIPs, Clip1, p150(glued), Clasp1, Lis1 and Stim1, in Xenopus laevis and report their expression patterns during embryogenesis in this paper.
View Article and Find Full Text PDFAccumulating data suggest a relationship between chemerin and energy metabolism. Our group previously described gene cloning, expression analysis and the regulatory mechanism of chemerin and its own receptor in mice and cattle. The objective of the present study was to investigate the physiological effect of chemerin on endocrine changes and energy metabolism in sheep using a biologically stable chemerin analog.
View Article and Find Full Text PDFContext: Since AMP-activated protein kinase (AMPK) activation in skeletal muscle of obese rodents stimulates fatty acid oxidation, it is reasonable to hypothesize that pharmacological activation of AMPK might be of therapeutic benefit in obesity.
Objective: To investigate the effects of the traditional Korean anti-obesity drug GGEx18, a mixture of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), on obesity and the involvement of AMPK in this process.
Context: Growing adipose tissue is thought to require adipogenesis, angiogenesis, and extracellular matrix (ECM) remodeling. Close examination of developing adipose tissue microvasculature reveals that angiogenesis often precedes adipogenesis. Since our previous study demonstrated that Ob-X, the anti-angiogenic herbal composition composed of Melissa officinalis L.
View Article and Find Full Text PDFAdipocyte differentiation is an important aspect in energy homeostasis. Although the regulation of adipocyte differentiation is relatively well understood, the underlying molecular mechanism remains unclear. In this study, subcutaneous and epididymal adipose tissues were used to study the differential expression of associated genes.
View Article and Find Full Text PDFAim Of The Study: Gyeongshingangjeehwan (GGEx), which is a polyherbal drug composed of four medicinal plants, has traditionally been used as anti-obesity drug in Korean local clinics. Thus, we investigated the effects of GGEx on visceral adiposity and examined whether adipose peroxisome proliferator-activated receptor alpha (PPARalpha) activation is involved in this process.
Materials And Methods: After Obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats and differentiated 3T3-L1 adipocytes were treated with GGEx, we studied the effects of GGEx on not only visceral white adipose tissue (WAT) mass and adipocyte size, but also the expression of adipocyte marker and PPARalpha target genes.
Recently, it has been found that long-chain fatty acids activate the G protein-coupled receptors (GPRs), GPR120 and GPR40. However, there have been no reports to date on the possible physiological roles of these GPRs in adipose tissue development and adipocyte differentiation. GPR120 mRNA was highly expressed in the four different adipose tissues, and the amount of mRNA was elevated in adipose tissues of mice fed a high fat diet.
View Article and Find Full Text PDFTo investigate the role of claudin-6 in adipogenesis, claudin-6 mRNA was examined in adipose tissues and adipocyte differentiation. Claudin-6 mRNA was found to be differentially expressed in four different adipose tissues, and up-regulated in each fat depot of mice fed a high-fat diet as compared to a normal-fat diet. Levels of claudin-6 transcripts were increased during differentiation of 3T3-L1 cells in vitro.
View Article and Find Full Text PDFUntil now, the various proteins highly expressed in adipose tissues have been identified and characterized by traditional gene cloning techniques. However, methods of computer analysis have been developed to compare the levels of expression among various tissues, and genes whose expression levels differ significantly between tissues have been found. Among these genes, we report on the possible function of a new adipose-specific gene, showed higher expression in adipose tissue through 'Search Expression' on Genome Institute of Norvartis Research Foundation (GNF) SymAtlas v0.
View Article and Find Full Text PDFIt has recently been discovered that G protein-coupled receptors (GPCR) 41 and 43 are characterized by having the short chain fatty acids acetate and propionate as their ligands. The objective of this study was to investigate the involvement of GPCR41, GPCR43, and their ligands in the process of adipogenesis. We measured the levels of GPCR41 and GPCR43 mRNA in both adipose and other tissues of the mouse.
View Article and Find Full Text PDFThe factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition.
View Article and Find Full Text PDFVisceral adipocytes differ in various biochemical properties from adipocytes of subcutaneous origin. However, information on differences in gene expression between visceral and subcutaneous fat depots is limited. Expression of the genes for the nonmuscle and muscle isoforms of the actin-binding protein cofilin was examined in subcutaneous and visceral fat depots of mice, pigs, and cattle by semiquantative reverse transcription and polymerase chain reaction analysis.
View Article and Find Full Text PDF