Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSeTePh, 0 ≤ ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps.
View Article and Find Full Text PDFThe synthesis of amides from amines and carboxylic acids is the most widely carried out reaction in medicinal chemistry. Yet, most amide couplings are still conducted using stoichiometric reagents, leading to significant waste; few synthetic catalysts for this transformation have been adopted industrially due to their limited scope and/or poor recyclability. The majority of catalytic approaches focus on a single activation mode, such as enhancing the electrophilicity of the carboxylic acid partner using a Lewis acid.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. A hybridization strategy is demonstrated synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. This work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature.
View Article and Find Full Text PDFWhile computational screening with density functional theory (DFT) is frequently employed for the screening of metal-organic frameworks (MOFs) for gas separation and storage, commonly applied generalized gradient approximations (GGAs) exhibit self-interaction errors, which hinder the predictions of adsorption energies. We investigate the Hubbard U parameter to augment DFT calculations for full periodic MOFs, targeting a more precise modeling of gas molecule-MOF interactions, specifically for N2, CO2, and O2. We introduce a calibration scheme for the U parameter, which is tailored for each MOF, by leveraging higher-level calculations on the secondary building unit (SBU) of the MOF.
View Article and Find Full Text PDFWe apply a scientific machine learning (ML) framework to aid the prediction and understanding of nanomaterial formation processes via a joint spectral-kinetic model. We apply this framework to study the nucleation and growth of two-dimensional (2D) perovskite nanosheets. Colloidal nanomaterials have size-dependent optical properties and can be observed , all of which make them a good model for understanding the complex processes of nucleation, growth, and phase transformation of 2D perovskites.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2023
multi-reference configuration interaction (MRCI) and coupled cluster singles doubles and perturbative triples [CCSD(T)] levels of theory were used to study ground and excited electronic states of HfCO. We report potential energy curves, dissociation energies (), excitation energies, harmonic vibrational frequencies, and chemical bonding patterns of HfCO. The Σ ground state of HfCO has an 1σ2σ1π electron configuration and a ∼30 kcal mol dissociation energy with respect to its lowest-energy fragments Hf(F) + CO(XΣ).
View Article and Find Full Text PDFOrganic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains.
View Article and Find Full Text PDF2D hybrid perovskites are currently in the spotlight of material research for light-harvesting and -emitting applications. It remains extremely challenging, however, to externally control their optical response due to the difficulties of introducing electrical doping. Here, an approach of interfacing ultrathin sheets of perovskites with few-layer graphene and hexagonal boron nitride into gate-tunable, hybrid heterostructures, is demonstrated.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2023
When a many-body wave function of a system cannot be captured by a single determinant, high-level multireference (MR) methods are required to properly explain its electronic structure. MR diagnostics to estimate the magnitude of such static correlation have been primarily developed for molecular systems and range from low in computational cost to as costly as the full MR calculation itself. We report the first application of low-cost MR diagnostics based on the fractional occupation number calculated with finite-temperature DFT to solid-state systems.
View Article and Find Full Text PDFSilver phenylselenolate (AgSePh, also known as "mithrene") and silver phenyltellurolate (AgTePh, also known as "tethrene") are two-dimensional (2D) van der Waals semiconductors belonging to an emerging class of hybrid organic-inorganic materials called metal-organic chalcogenolates. Despite having the same crystal structure, AgSePh and AgTePh exhibit a strikingly different excitonic behavior. Whereas AgSePh exhibits narrow, fast luminescence with a minimal Stokes shift, AgTePh exhibits comparatively slow luminescence that is significantly broadened and red-shifted from its absorption minimum.
View Article and Find Full Text PDFInspired by Grimme's simplified Tamm-Dancoff density functional theory approach [Grimme, S. 2013, 138, 244104], we describe a simplified approach to excited-state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equation (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion integrals yields the same structure as with tensor hypercontraction, such that our method has a storage requirement that grows quadratically with system size and computational timing that grows cubically with system size.
View Article and Find Full Text PDFBehaving like atomically precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered hybrid organic-inorganic lead halide perovskites (HOIPs) have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These strong interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parametrize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions.
View Article and Find Full Text PDFVisual dialog demonstrates several important aspects of multimodal artificial intelligence; however, it is hindered by visual grounding and visual coreference resolution problems. To overcome these problems, we propose the novel neural module network for visual dialog (NMN-VD). NMN-VD is an efficient question-customized modular network model that combines only the modules required for deciding answers after analyzing input questions.
View Article and Find Full Text PDFLayered van der Waals (vdW) materials belonging to the 'Te structure class have recently received intense attention due to their ability to host exotic electronic transport phenomena, such as in-plane transport anisotropy, Weyl nodes, and superconductivity. Here we report two new vdW materials with strongly anisotropic in-plane structures featuring stripes of metallic TaTe and semiconducting FeTe, α-TaFeTe and β-TaFeTe. We find that the structure of α-TaFeTe produces strongly anisotropic in-plane electronic transport (anisotropy ratio of up to 250%), outcompeting all other vdW metals, and demonstrate that it can be mechanically exfoliated to the two-dimensional (2D) limit.
View Article and Find Full Text PDFWe study the impact of organic surface ligands on the electronic structure and electronic band edge energies of quasi-two-dimensional (2D) colloidal cadmium selenide nanoplatelets (NPLs) using density functional theory. We show how control of the ligand and ligand-NPL interface dipoles results in large band edge energy shifts, over a range of 5 eV for common organic ligands with a minor effect on the NPL band gaps. Using a model self-energy to account for the dielectric contrast and an effective mass model of the excitons, we show that the band edge tunability of NPLs together with the strong dependence of the optical band gap on NPL thickness can lead to favorable photochemical and optoelectronic properties.
View Article and Find Full Text PDFUnderstanding and controlling disorder is key to nanotechnology and materials science. Traditionally, disorder is attributed to local fluctuations of inherent material properties such as chemical and structural composition, doping or strain. Here, we present a fundamentally new source of disorder in nanoscale systems that is based entirely on the local changes of the Coulomb interaction due to fluctuations of the external dielectric environment.
View Article and Find Full Text PDF