ACS Appl Mater Interfaces
June 2024
Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases.
View Article and Find Full Text PDFBlood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters.
View Article and Find Full Text PDFTo investigate the effect of miscibility between conjugated polymers (CPs) and Y6 on bulk-heterojunction (BHJ) type morphology, we propose three different CPs with similar chemical structures but different miscibility with Y6. After selectively removing Y6 from the CP/Y6 blend films, their interface morphology and interlocked dimensions are quantitatively compared using a square-wave model. As CP-Y6 miscibility increases, a higher intermixed interface is formed, providing an enlarged CP-Y6 interface area.
View Article and Find Full Text PDFConjugated polymers (CPs) have provided versatile semiconducting implements for the development of soft electronic devices. When three CPs with the same conjugated framework but different side chains were adopted in the field-effect transistor (FET) sensor for NO detection, the response to NO showed an opposite tendency to the charge carrier mobility of each CP. Morphological and structural characterizations revealed that the flexible glycol side chain enhances NO affinity as well as prevents the formation of lamellar stacking of the CP chains, thereby providing routes for the facile diffusion of NO.
View Article and Find Full Text PDFIntercorrelation of thermoelectric properties of a doped conjugated semiconducting polymer (PIDF-BT) with charge carrier density, conductive morphology, and crystallinity are systematically investigated. Upon being doped with F4-TCNQ by the sequential doping method, PIDF-BT exhibited a high electrical conductivity over 210 S cm. The significant enhancement of electrical conductivity resulted from a high charge carrier density, which is attributed to the effective charge-transfer-based integer doping between PIDF-BT and dopant molecules.
View Article and Find Full Text PDFDespite the usefulness of organochlorides as raw materials for organic synthesis, they cause several issues in the human body, such as hepatic dysfunction, tumor, and heavy damage to the central nervous system. Especially when organochlorides contain three or more chlorinated carbons, they tend to be more toxic to the human body possibly owing to relatively high reactivity. Several electron donors (TPCAs) are designed to devise a novel detection system for toxic organochlorides containing trichlorinated carbons, and the detection mechanism of the devised sensor system is systematically identified by EPR measurement and the analysis of the solution after the detection of chloroform, which is used as a model compound.
View Article and Find Full Text PDF