Publications by authors named "Yeongju Byun"

Extracellular vesicles (EVs) have emerged as a potential delivery vehicle for nucleic-acid-based therapeutics, but challenges related to their large-scale production and cargo-loading efficiency have limited their therapeutic potential. To address these issues, we developed a novel "shock wave extracellular vesicles engineering technology" (SWEET) as a non-genetic, scalable manufacturing strategy that uses shock waves (SWs) to encapsulate siRNAs in EVs. Here, we describe the use of the SWEET platform to load large quantities of KRAS-targeting siRNA into small bovine-milk-derived EVs (sBMEVs), with high efficiency.

View Article and Find Full Text PDF

Cardiotoxicity is associated with the long-term clinical application of doxorubicin (DOX) in cancer patients. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) including exosomes have been suggested for the treatment of various diseases, including ischemic diseases. However, the effects and functional mechanism of MSC-sEVs in DOX-induced cardiomyopathy have not been clarified.

View Article and Find Full Text PDF