Publications by authors named "Yeongcheol Han"

The historical climate variability in East Antarctica inferred from ice cores remains under debate owing to the vastness and complexity of the region. This study evaluates the potential climate variabilities in the Styx-M ice core records (δO, d-excess, and snow accumulation) from northern Victoria Land adjacent to the Ross Sea sector of East Antarctica during 1979-2014. Results show that the primary moisture source in this area is the Pacific Ocean sector.

View Article and Find Full Text PDF

Greenland ice core records exhibited 100-fold higher dust concentrations during the Last Glacial Maximum (LGM) than during the Holocene, and dust input temporal variability corresponded to different climate states in the LGM. While East Asian deserts, the Sahara, and European loess have been suggested as the potential source areas (PSAs) for Greenland LGM dust, millennial-scale variability in their relative contributions within the LGM remains poorly constrained. Here, we present the morphological, mineralogical, and geochemical characteristics of insoluble microparticles to constrain the provenance of dust in Greenland NEEM ice core samples covering cold Greenland Stadials (GS)-2.

View Article and Find Full Text PDF

We present lead (Pb) concentrations and isotope ratios in a continuous series of 38 snow samples from a 1.9-m snow pit, covering the period from winter 2012 to summer 2017, at the East Greenland Ice-core Project (EGRIP) ice core drill site in northwestern Greenland. Pb concentrations were highly variable, ranging from 1.

View Article and Find Full Text PDF

A lead (Pb) isotopic record, covering the two oldest glacial-interglacial cycles (~572 to 801 kyr ago) characterized by lukewarm interglacials in the European Project for Ice Coring in Antarctica Dome C ice core, provides evidence for dust provenance in central East Antarctic ice prior to the Mid-Brunhes Event (MBE), ~430 kyr ago. Combined with published post-MBE data, distinct isotopic compositions, coupled with isotope mixing model results, suggest Patagonia/Tierra del Fuego (TdF) as the most important sources of dust during both pre-MBE and post-MBE cold and intermediate glacial periods. During interglacials, central-western Argentina emerges as a major contributor, resulting from reduced dust supply from Patagonia/TdF after the MBE, contrasting to the persistent dominance of dust from Patagonia/TdF before the MBE.

View Article and Find Full Text PDF

The triple oxygen isotopes (O, O, and O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes.

View Article and Find Full Text PDF

Mineral dust can indirectly affect the climate by supplying bioavailable iron (Fe) to the ocean. Here, we present the records of dissolved Fe (DFe) and total Fe (TDFe) in North Greenland Eemian Ice Drilling (NEEM) ice core over the past 110 kyr BP. The Fe records are significantly negatively correlated with the carbon-dioxide (CO) concentrations during cold periods.

View Article and Find Full Text PDF

This study presents ultraclean procedures used in the challenging task of determining trace elements at or below the pg/g concentration level encountered in Greenland snow and ice. In order to validate these ultraclean procedures, recent snowfall and Holocene ice from northwest Greenland were analyzed for Cd, U, and Zn concentrations. The total procedural blanks brought through the entire measurement procedure proved to be negligible, compared to trace element concentrations, measured in snow and ice samples.

View Article and Find Full Text PDF

We report the first high-resolution record of arsenic (As) observed in Greenland snow and ice for the periods 1711-1970 and 2003-2009 AD. The results show well-defined large-scale atmospheric pollution by this toxic element in the northern hemisphere, beginning as early as the 18th century. The most striking feature is an abrupt, unprecedented enrichment factor (EF) peak in the late 1890s, with an ∼30-fold increase in the mean value above the Holocene natural level.

View Article and Find Full Text PDF

Anthropogenic plutonium (Pu) in the environment is a result of atmospheric nuclear testing during the second half of the 20th century. In this work, we analyzed a 4-meter deep Antarctic Plateau snowpack characterized by a low snow accumulation rate and negligible snow impurities. These sample conditions enabled us to measure the snowpack Pu fallout by applying inductively coupled plasma sector field mass spectrometry to a few mL of snow melt without purification or preconcentration.

View Article and Find Full Text PDF

Dust concentrations in Greenland ice show pronounced glacial/interglacial variations with almost two orders of magnitude increase during the Last Glacial Maximum. Greenland glacial dust was previously sourced to two East Asian deserts: the Taklimakan and Gobi deserts. Here we report the first high-resolution Pb and Sr isotopic evidence for a significant Saharan dust influence in Greenland during the last glacial period, back to ~31 kyr ago, from the Greenland NEEM ice core.

View Article and Find Full Text PDF

Photochemically driven mercury (Hg) exchange between the atmosphere and the Antarctic Plateau snowpack has been observed. An imbalance in bidirectional flux causes a fraction of Hg to remain in the snowpack perennially, but the factors that control the amount of Hg sequestered on the Antarctic Plateau are not fully understood. We analyzed sub-annual variations in total Hg (Hg) deposition to Dome Fuji over the period of 1986-2010 using cold vapor inductively coupled plasma mass spectrometry and compared concentrations with those of sea salt components (Na and Cl).

View Article and Find Full Text PDF

Well-defined variations in the enrichments and isotopic compositions of Pb have been observed in snow from Dome Fuji and Dome A in the central East Antarctic Plateau (EAP) over the past few decades. The Pb isotopic fingerprints indicate that the rapid increase in Pb enrichments from the mid-1970s, reaching a peak in ∼1980, is due to the massive use of leaded gasoline in northern South America, especially Brazil. Since then, they show a continuous decline, mostly due to the significant removal of the Pb additives from gasoline in Brazil in the 1980s and, subsequently, in Argentina and Chile in the 1990s.

View Article and Find Full Text PDF

An improved decontamination method and ultraclean analytical procedures have been developed to minimize Pb contamination of processed glacial ice cores and to achieve reliable determination of Pb isotopes in North Greenland Eemian Ice Drilling (NEEM) deep ice core sections with concentrations at the sub-picogram per gram level. A PL-7 (Fuso Chemical) silica-gel activator has replaced the previously used colloidal silica activator produced by Merck and has been shown to provide sufficiently enhanced ion beam intensity for Pb isotope analysis for a few tens of picograms of Pb. Considering the quantities of Pb contained in the NEEM Greenland ice core and a sample weight of 10 g used for the analysis, the blank contribution from the sample treatment was observed to be negligible.

View Article and Find Full Text PDF