A significant amount of chlorine, and alkali and alkaline earth metal (AAEM) in food waste has been a major limitation to the utilization of food waste as fuel. The present study aims to investigate the behavior of chlorine and AAEM in food waste biochar during pyrolysis, demineralization, and combustion. Food waste compost (FWC) and food waste feedstock (FWF) were selected as raw materials.
View Article and Find Full Text PDFThis study investigated the possibility of applying pyrolysis as an alternative method to recycle powdered activated carbon-containing water treatment residuals (PAC-WTRs) discharged from the Cheongju water treatment plant as a multifunctional adsorbent. WTRs pyrolyzed for 1 h at 200-700 °C were compared with raw material. The carbon content of the PAC-WTR reaches 19.
View Article and Find Full Text PDFThis study proposes a novel method to directly treat reject water with a high ammonium content, without relying on dilution. The originality of this method resides in leveraging the coordinated action of a methane- and methanol-dependent bacterial consortium and the biogas generated from wastewater treatment facilities. Specifically, ammonium is removed through autotrophic assimilation in the glutamate cycle of methanotrophs and Methylophilus while, simultaneously, methanol generated by methanotrophs is treated through formaldehyde assimilation as Methylophilus undergo the same ribulose monophosphate cycle as methanotrophs.
View Article and Find Full Text PDFTwo-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system.
View Article and Find Full Text PDF