Objective: This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods: Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics-compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)-from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT).
Objective: To investigate the agreement and reliability of estimating the volumes and normative percentiles (N%) of segmented brain regions among NeuroQuant (NQ), DeepBrain (DB), and FreeSurfer (FS) software programs, focusing on the comparison between NQ and DB.
Materials And Methods: Three-dimensional T1-weighted images of 145 participants (48 healthy participants, 50 patients with mild cognitive impairment, and 47 patients with Alzheimer's disease) from a single medical center (SMC) dataset and 130 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset were included in this retrospective study. All images were analyzed with DB, NQ, and FS software to obtain volume estimates and N% of various segmented brain regions.