The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia and produces the mycotoxin sterigmatocystin (ST), the penultimate precursor of aflatoxins. It has been known that asexual development and ST production are tightly co-regulated by various regulatory inputs. Here, we report that the novel regulator AslA with a CH domain oppositely regulates development and ST biosynthesis.
View Article and Find Full Text PDFBeta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans.
View Article and Find Full Text PDFIn fungi and plants, vacuoles function as a storage and sequestration vessel for a wide variety of ions and are responsible for cytosolic ion homeostasis and responses to ionic shock. In the filamentous fungus Aspergillus nidulans, however, little is known about the molecular genetic mechanisms of vacuolar biogenesis and function. In the present study, we analyzed the function of the aslA gene (AN5583) encoding a novel C2H2-type zinc finger transcription factor (TF) in relation to K(+) stress resistance, vacuolar morphology, and vacuolar transporters.
View Article and Find Full Text PDFGaf1 is the first GATA family zinc-finger transcription factor identified in Schizosaccharomyces pombe. Here, we report that Gaf1 functions as a negatively acting transcription factor of ste11(+), delaying the entrance of cells exposed to transient nitrogen starvation into the meiotic cycle. gaf1Δ strains exhibited accelerated G(1)-arrest upon nitrogen starvation.
View Article and Find Full Text PDFThe ability to sense and adapt to a hostile host environment is a crucial element for virulence of pathogenic fungi, including Cryptococcus neoformans. These cellular responses are evoked by diverse signaling cascades, including the stress-activated HOG pathway. Despite previous analysis of central components of the HOG pathway, its downstream signaling network is poorly characterized in C.
View Article and Find Full Text PDFExpression of chsE encoding one of the five chitin synthases of Aspergillus nidulans was analyzed. Expression of chsE was moderate in conidiophores, but somewhat weaker in vegetative mycelia. During sexual development, chsE was expressed strongly in young cleistothecia and hülle cells, but little in mature sexual structures.
View Article and Find Full Text PDF