Publications by authors named "Yeon-Sik Choi"

Eco/bioresorbable electronics represent an emerging class of technology defined by an ability to dissolve or otherwise harmlessly disappear in environmental or biological surroundings after a period of stable operation. The resulting devices provide unique capabilities as temporary biomedical implants, environmental sensors, and related systems. Recent publications report schemes to overcome challenges in fabrication that follow from the low thermostability and/or high chemical reactivity of the eco/bioresorbable constituent materials.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared high-intensity focused ultrasound (HIFU) therapy and coblation for treating inferior turbinate hypertrophy in 20 patients.
  • Both treatments showed significant improvements in nasal obstruction symptoms after 12 weeks, but no major difference in overall effectiveness or patient satisfaction was found between the groups.
  • HIFU demonstrated advantages such as quicker mucosal recovery and less discomfort during the procedure, suggesting it may be a preferable noninvasive option for this condition.
View Article and Find Full Text PDF

Recently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature.

View Article and Find Full Text PDF

Genetic engineering and implantable bioelectronics have transformed investigations of cardiovascular physiology and disease. However, the two approaches have been difficult to combine in the same species: genetic engineering is applied primarily in rodents, and implantable devices generally require larger animal models. We recently developed several miniature cardiac bioelectronic devices suitable for mice and rats to enable the advantages of molecular tools and implantable devices to be combined.

View Article and Find Full Text PDF

Local electrical stimulation of peripheral nerves can block the propagation of action potentials, as an attractive alternative to pharmacological agents for the treatment of acute pain. Traditional hardware for such purposes, however, involves interfaces that can damage nerve tissue and, when used for temporary pain relief, that impose costs and risks due to requirements for surgical extraction after a period of need. Here, we introduce a bioresorbable nerve stimulator that enables electrical nerve block and associated pain mitigation without these drawbacks.

View Article and Find Full Text PDF

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control.

View Article and Find Full Text PDF

Peripheral nerve interfaces are frequently used in experimental neuroscience and regenerative medicine for a wide variety of applications. Such interfaces can be sensors, actuators, or both. Traditional methods of peripheral nerve interfacing must either tether to an external system or rely on battery power that limits the time frame for operation.

View Article and Find Full Text PDF

Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body.

View Article and Find Full Text PDF

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices.

View Article and Find Full Text PDF

Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period.

View Article and Find Full Text PDF

Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer.

View Article and Find Full Text PDF

This research work deals with the comparative study of CFO + Ar and CF + Ar gas chemistries in respect to Si and SiO reactive-ion etching processes in a low power regime. Despite uncertain applicability of CFO as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters.

View Article and Find Full Text PDF

Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections.

View Article and Find Full Text PDF

Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release.

View Article and Find Full Text PDF

Dipole alignment in ferroelectric polymers is routinely exploited for applications in charge-based applications. Here, we present the first experimental realization of ideally ordered dipole alignment in α-phase nylon-11 nanowires. This is an unprecedented discovery as dipole alignment is typically only ever achieved in ferroelectric polymers using an applied electric field, whereas here, we achieve dipole alignment in as-fabricated nanowires of 'non-ferroelectric' α-phase nylon-11, an overlooked polymorph of nylon proposed 30 years ago but never practically realized.

View Article and Find Full Text PDF

Crystal structure is crucial in determining the properties of piezoelectric polymers, particularly at the nanoscale where precise control of the crystalline phase is possible. Here, we investigate the electromechanical properties of three distinct crystalline phases of Nylon-11 nanowires using advanced scanning probe microscopy techniques. Stiff α-phase nanowires exhibited a low piezoelectric response, while relatively soft δ'-phase nanowires displayed an enhanced piezoelectric response.

View Article and Find Full Text PDF

Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues.

View Article and Find Full Text PDF

Efficient room temperature NIR detection with sufficient current gain is made with a solution-processed networked SWNT FET. The high performance NIR-FET with significantly enhanced photocurrent by more than two orders of magnitude compared to dark current in the depleted state is attributed to multiple Schottky barriers in the network, each of which absorb NIR and effectively separate photocarriers to corresponding electrodes.

View Article and Find Full Text PDF

Background: Leptin, angiopoietin-related growth factor (AGF), adiponectin (ADP), and retinol-binding protein 4 (RBP4) are cytokines associated with the development of metabolic disorders, such as type 2 diabetes and cardio vascular disease. However, the levels of these cytokines have not extensively studied in non-diabetic subjects. Therefore, we analyzed the differences in these cytokine levels according to sex and age in non-diabetic Korean population.

View Article and Find Full Text PDF

Although peroxisome proliferator receptor (PPAR)-α and PPAR-γ agonist have been developed as chemical tools to uncover biological roles for the PPARs such as lipid and carbohydrate metabolism, PPAR-δ has not been fully investigated. In this study, we examined the effects of the PPAR-δ agonist GW0742 on fatty liver changes and inflammatory markers. We investigated the effects of PPAR-δ agonist GW0742 on fatty liver changes in OLETF rats.

View Article and Find Full Text PDF

High performance field-induced AC electroluminescence (EL) in a simple ITO/insulator/hybrid emitter/Au structure was demonstrated with efficient control of the brightness and colors based on solution-processed nanohybrids of CdSe-ZnS core-shell colloidal quantum dots and fluorescent polymers.

View Article and Find Full Text PDF

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO.

View Article and Find Full Text PDF

We developed a high-performance field-induced polymer electroluminescence (FPEL) device consisting of four stacked layers: a top metal electrode/thin solution-processed nanocomposite film of single wall carbon nanotubes (SWNTs) and a fluorescent polymer/insulator/transparent bottom electrode working under an alternating current (AC) electric field. A small amount of SWNTs that were highly dispersed in the fluorescent polymer matrix by a conjugate block copolymer dispersant significantly enhanced EL, and we were able to realize an SWNT-FPEL device with a light emission of approximately 350 cd/m(2) at an applied voltage of ±25 V and an AC frequency of 300 kHz. The brightness of the SWNT-FPEL device is much greater than those of other AC-based organic or even inorganic ELs that generally require at least a few hundred volts.

View Article and Find Full Text PDF