Publications by authors named "Yeon-Mo Yang"

Background: The stability criterion approach is very important for estimating precise behavior before or after fabricating brain computer interface system applications.

Objective: A novel approach using the Routh-Hurwitz standard criterion method is proposed to easily determine and analyze the stability of brain computer interface system applications. Using this developed approach, we were able to easily test the stability of technical issue using simple programmed codes before or after brain computer interfaces fabrication applications.

View Article and Find Full Text PDF

A novel whitening technique for motor imagery (MI) classification is proposed to reduce the accuracy variance of brain-computer interfaces (BCIs). This method is intended to improve the electroencephalogram eigenface analysis performance for the MI classification of BCIs. In BCI classification, the variance of the accuracy among subjects is sensitive to the accuracy itself for superior classification results.

View Article and Find Full Text PDF

The brain-computer interface (BCI) is used to understand brain activities and external bodies with the help of the motor imagery (MI). As of today, the classification results for EEG 4 class BCI competition dataset have been improved to provide better classification accuracy of the brain computer interface systems (BCIs). Based on this observation, a novel quick-response eigenface analysis (QR-EFA) scheme for motor imagery is proposed to improve the classification accuracy for BCIs.

View Article and Find Full Text PDF