Publications by authors named "Yeon Sun Kim"

Progesterone (P) is required for the preparation of the endometrium for a successful pregnancy. P resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P-progesterone receptor (PGR) signaling networks in the mouse uterus.

View Article and Find Full Text PDF

Implantation is the first direct encounter between the embryo and uterus during pregnancy, and is the earliest known molecular signaling for embryo-uterine crosstalk during implantation. The downstream effectors of heparin-binding EGF (HB-EGF) in implantation remain elusive due to the complexity of EGF receptor family. This study shows that the formation of implantation chamber (crypt) triggered by HB-EGF is disrupted by uterine deletion of a key planar cell polarity component (PCP).

View Article and Find Full Text PDF

Embryonic diapause is a reproductive strategy in which embryo development and growth is temporarily arrested within the uterus to ensure the survival of neonates and mothers during unfavorable conditions. Pregnancy is reinitiated when conditions become favorable for neonatal survival. The mechanism of how the uterus enters diapause in various species remains unclear.

View Article and Find Full Text PDF

Directed trophoblast migration toward the maternal mesometrial pole is critical for placentation and pregnancy success. Trophoblasts replace maternal arterial endothelial cells to increase blood supply to the placenta. Inferior trophoblast invasion results in pregnancy complications including preeclampsia, intrauterine growth restriction, miscarriage, and preterm delivery.

View Article and Find Full Text PDF

Objectives: The female reproductive tract comprises several different cell types. Using three representative Cre systems, we comparatively analysed the phenotypes of Dgcr8 conditional knockout (cKO) mice to understand the function of Dgcr8, involved in canonical microRNA biogenesis, in the female reproductive tract.

Materials And Methods: Dgcr8 mice were crossed with Ltf , Amhr2 or PR mice to produce mice deficient in Dgcr8 in epithelial (Dgcr8 ), mesenchymal (Dgcr8 ) and all the compartments (Dgcr8 ) in the female reproductive tract.

View Article and Find Full Text PDF

Background: Aberration of estrogen (E) and/or progesterone (P) signaling pathways affects expression of their target genes, which may lead to failure of embryo implantation and following pregnancy. Although many target genes of progesterone receptors (PRs) have been identified in uterine stroma, only a few PR targets have been reported in the epithelium. Secretory phospholipase A-(PLA)-X, a member of the PLA family that releases arachidonic acids for the synthesis of prostaglandins that are important for embryo implantation, is dysregulated in the endometrium of patients suffering from repeated implantation failure.

View Article and Find Full Text PDF

With implantation, mouse stromal cells begin to transform into epithelial-like cells surrounding the implantation chamber forming an avascular zone called the primary decidual zone (PDZ). In the mouse, the PDZ forms a transient, size-dependent permeable barrier to protect the embryo from maternal circulating harmful agents. The process of decidualization is critical for pregnancy maintenance in mice and humans.

View Article and Find Full Text PDF

Asherman's syndrome (AS) is characterized by intrauterine adhesions or fibrosis resulting from scarring inside the endometrium. AS is associated with infertility, recurrent miscarriage, and placental abnormalities. Although mesenchymal stem cells show therapeutic promise for the treatment of AS, the molecular mechanisms underlying its pathophysiology remain unclear.

View Article and Find Full Text PDF

Purpose: Subfertility associated with polycystic ovary syndrome (PCOS) mainly originates from oligoovulation/anovulation. Although insulin resistance and androgen excess are known to cause PCOS-associated implantation failure, the consequences of PCOS on endometrial homeostasis and pathophysiology have not been comprehensively understood. In this study, we examined whether the pathophysiologic milieu of PCOS intrinsically affects expression profiles of genes related to insulin signaling and facilitative glucose transporters (GLUTs) in the human endometrium and/or during in vitro decidualization.

View Article and Find Full Text PDF

Backround: CRISPR/Cpf1 is a class II, type V RNA-guided endonuclease that is distinct from the type II CRISPR/Cas9 nuclease, widely used for genome editing. Cpf1 is a smaller and simpler endonuclease than Cas9, overcoming some limitations of the CRISPR/Cas9 system. The applications of CRISPR to rodent embryos for the production of knock-out (KO) mice have been achieved mainly by microinjection, which requires heavily-equipped instruments with skillful hands.

View Article and Find Full Text PDF

Purpose:: Subfertility associated with polycystic ovary syndrome (PCOS) mainly originates from oligoovulation/anovulation. Although insulin resistance and androgen excess are known to cause PCOS-associated implantation failure, the consequences of PCOS on endometrial homeostasis and pathophysiology have not been comprehensively understood. In this study, we examined whether the pathophysiologic milieu of PCOS intrinsically affects expression profiles of genes related to insulin signaling and facilitative glucose transporters (GLUTs) in the human endometrium and/or during in vitro decidualization.

View Article and Find Full Text PDF

Nano-sized particles (NPs) of various materials have been extensively used as therapeutic and diagnostic agents, drug delivery systems, and biomedical devices. However, the biological impacts of NP exposure during early embryogenesis on following development and next generations have not been investigated. Here, we demonstrated that polylactic-co-glycolic acid (PLGA)-NPs were not toxic and did not perturb development of preimplantation mouse embryos in vitro.

View Article and Find Full Text PDF

Decay accelerating factor (DAF) is upregulated in the fetoplacental trophoblast, which protects the fetus from maternal complement injury. DAF was found to be downregulated in the endometrium of patients with repeated implantation failure. Thus, we examined the molecular mechanisms of DAF expression regulation by ovarian steroid hormones in the mouse uterus.

View Article and Find Full Text PDF

The harmonized actions of ovarian E and progesterone (P) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P signaling have been identified, few local factors that mediate E actions in the uterus have been revealed.

View Article and Find Full Text PDF

Early growth response 1 (Egr1) is a key transcription factor that mediates the action of estrogen (E) to establish uterine receptivity for embryo implantation. However, few direct target genes of EGR1 have been identified in the uterus. Here, we demonstrated that E induced EGR1-regulated transcription of c-Kit, which plays a crucial role in cell fate decisions.

View Article and Find Full Text PDF

Intimate two-way interactions between the implantation-competent blastocyst and receptive uterus are prerequisite for successful embryo implantation. In humans, recurrent/repeated implantation failure (RIF) may occur due to altered uterine receptivity with aberrant gene expression in the endometrium as well as genetic defects in embryos. Several studies have been performed to understand dynamic changes of uterine transcriptome during menstrual cycles in humans.

View Article and Find Full Text PDF

DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8(d/d) females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice.

View Article and Find Full Text PDF

Objective: To determine the predictive factors for progression and recurrence of vulvovaginal condyloma (VVC), with a specific focus on high-risk HPV (HR-HPV) infections.

Methods: Retrospective data were collected from 48 patients who were diagnosed with VVC and treated with topical trichloroacetic acid application or laser therapy during 2003-2014 at a hospital in South Korea. The diagnoses were made based on the presence of exophytic condylomatous lesions as assessed by direct visual inspection regardless of whether a biopsy was performed.

View Article and Find Full Text PDF

Purpose: The aim of this study is to evaluate the relationship between abdominal subcutaneous fat thickness measured by ultrasonography (US) and serum lipid profile and liver transaminases in obese children.

Methods: One hundred and sixty-six children diagnosed with obesity from May 2001 to December 2013 were included in this study. Data on serum lipid profile and liver transaminases were collected from clinical records.

View Article and Find Full Text PDF

Objective: This study evaluated the potential of interleukin 12 receptor beta 2 and tumor necrosis factor receptor superfamily member 8 as diagnostic biomarkers of oral lichen planus (OLP).

Materials And Methods: The mRNA expression of IL12RB2 and TNFRSF8 in FFPE OLP samples (OLP group, n = 38) were investigated with quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis and compared to those of chronic non-specific mucositis (Non-OLP group, n = 25) and normal mucosa (Normal group, n = 18). Predictive modeling of the expression of IL12RB2 and TNFRSF8 was constructed using support vector machine (SVM), random forest (RF), linear discriminant analysis (LDA), neural network (NN) and naive Bayes (NB) methods.

View Article and Find Full Text PDF

During 2011~2013, a total of 729 samples for 19 types of medicinal plant were collected from Seoulyekryungsi in Seoul, Korea, and investigated for the presence of aflatoxins. The samples were analyzed using immunoaffinity column cleanup and high-performance liquid chromatography coupled to a fluorescence detector after post-column derivatization. Aflatoxins were found in 124 out of the 729 analyzed samples: 65 containing aflatoxin B1 (AFB1), 24 with aflatoxin B2 (AFB2), 15 with aflatoxin G1 (AFG1), and 20 samples with aflatoxin G2 (AFG2).

View Article and Find Full Text PDF

Objectives: Early detection and treatment of an oral squamous cell carcinoma (OSCC) is critical because of its rapid growth, frequent lymph-node metastasis, and poor prognosis. However, no clinically-valuable methods of early diagnosis exist, and genetic analysis of OSCCs has yielded no biomarkers.

Study Design: We investigated the expression of genes associated with inflammation in OSCCs via a quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis of microarray data.

View Article and Find Full Text PDF

Coordinate actions of ovarian estrogen (E2) and progesterone (P4) via their own receptors are critical for establishing uterine receptivity for embryo implantation in the uterus. E2 regulates expression of an array of genes to mediate its major actions on heterogeneous uterine cell types. Here we have investigated regulatory mechanism(s) of E2 and bisphenol A (BPA), an endocrine disruptor with potent estrogenic activity on expression of early growth response 1 (Egr1), a zinc finger transcription factor that regulates cell growth, differentiation and apoptosis in the uterus.

View Article and Find Full Text PDF

Both basal and submucosal gland (SMG) duct stem cells of the airway epithelium are capable of sphere formation in the in vitro sphere assay, although the efficiency at which this occurs is very low. We sought to improve this efficiency of sphere formation by identifying subpopulations of airway basal stem cells (ABSC) and SMG duct cells based on their aldehyde dehydrogenase (ALDH) activity. ALDH(hi) ABSCs and SMG duct cells were highly enriched for the population of cells that could make spheres, while the co-culture of ALDH(hi) differentiated cells with the ALDH(hi) ABSCs increased their sphere-forming efficiency.

View Article and Find Full Text PDF