Background/objectives: The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using and models.
Materials/methods: The Lewis lung carcinoma-induced cancer cachexia model was used and , and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
This study investigated the effects of various binary sweetener mixtures on sweetness enhancement and their interactions with sweet or bitter taste receptors, focusing on sensory perception and receptor activity. Acesulfame K or saccharin was mixed with allulose, aspartame, erythritol, fructose, glucose, or sucrose to match a target sucrose sweetness. The effects of the mixtures on sweet and bitter taste receptors (in the human embryonic kidney -293 cells) and sensory taste intensities were evaluated.
View Article and Find Full Text PDFNeuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses.
View Article and Find Full Text PDFBioelectronic tongues based on umami taste receptors have recently been reported for versatile applications such as food analyses. However, their practical applications are still limited, partly due to their limited stability and non-specific responses in real sample environments. Herein, we have developed a hydrogel-based bioelectronic tongue for the sensitive assessment of umami intensity in fish extract samples.
View Article and Find Full Text PDFAn in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction.
View Article and Find Full Text PDFA photoreceptor on the retina acts as an optical waveguide to transfer an individual photonic signal to the cell inside, which is determined by the refractive index of internal materials. Under the photoactivation of photoreceptors making conformational and chemical variation in a visual cell, the optical signal modulation is demonstrated using an artificial photoreceptor-based waveguide with a controlling beam refraction. Two types of nanodiscs are made of human photoreceptor proteins, short-wavelength-sensitive opsin and rhodopsin, with spectral sensitivity.
View Article and Find Full Text PDFBackground/objectives: Bitter taste receptors are taste signaling pathway mediators, and are also expressed and function in extra-gustatory organs. Skin aging affects the quality of life and may lead to medical issues. The purpose of this study was to better understand the anti-skin aging effects of bitter taste receptors in D-galactose (D-gal)-induced aged human keratinocytes, HaCaT cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Sweet taste is an important factor that regulates calorie intake and contributes to food preferences in humans and animals. Therefore, the evaluation of sweet substances is essential for various fields such as healthcare, food, and pharmaceutical industries. Sweet tastants are detected by sweet taste receptors which are class C G-protein-coupled receptors.
View Article and Find Full Text PDFThe human sweet taste receptor is a TAS1R2/TAS1R3 heterodimer. To investigate the correlation between the in vitro affinity of sweeteners with stably expressed human sweet taste receptor in HEK-293 cells and human sensory evaluation, the receptor-ligand activity of bulk (sucrose, D-fructose, and allulose) and high-intensity sweeteners (saccharin, rebaudioside A, rebaudioside M, and neohesperidin dihydrochalcone) was compared by analyzing the Ca release. The relative potency of the sweeteners was identified over a wide concentration range for ECs.
View Article and Find Full Text PDFVarious nanobiosensors composed of biomaterials and nanomaterials have been developed, due to their demonstrated advantage of showing high performance. Among various biomaterials for biological recognition elements of the nanobiosensor, sensory receptors, such as olfactory and taste receptors, are promising biomaterials for developing nanobiosensors, because of their high selectivity to target molecules. Field-effect transistors (FET) with nanomaterials such as carbon nanotube (CNT), graphene, and conducting polymer nanotube (CPNT), can be combined with the biomaterials to enhance the sensitivity of nanobiosensors.
View Article and Find Full Text PDF