As the control over radioactive species becomes critical for the contemporary human life, the development of functional materials for decontamination of radioactive substances has also become important. In this work, a three-dimensional (3D) porous carbon monolith functionalized with Prussian blue particles was prepared through removal of colloidal silica particles from exfoliated graphene/silica composite precursors. The colloidal silica particles with a narrow size distribution were used to act a role of hard template and provide a sufficient surface area that could accommodate potentially hazardous radioactive substances by adsorption.
View Article and Find Full Text PDFWith the development of microelectronic devices having miniaturized and integrated electronic components, an efficient thermal management system with lightweight materials, which have outstanding thermal conductivity and processability, is becoming increasingly important. Recently, the use of polymer-based thermal management systems has attracted much interest due to the intrinsic excellent properties of the polymer, such as the high flexibility, low cost, electrical insulation, and excellent processability. However, most polymers possess low thermal conductivity, which limits the thermal management applications of them.
View Article and Find Full Text PDFWe demonstrate that using nanocomposite thin films consisting of semiconducting polymer, poly(3-hexylthiophene) (P3HT), and electrochemically exfoliated graphene (EEG) for the active channel layer of organic field-effect transistors (OFETs) improves both device performances and mechanical properties. The nanocomposite film was developed by directly blending P3HT solution with a dispersion of EEG at various weight proportions and simply transferring to an Si/SiO2 substrate by the solution floating method. The OFET based on P3HT/EEG nanocomposite film showed approximately twice higher field-effect mobility of 0.
View Article and Find Full Text PDFThe aim of the present study was to evaluate functional changes of mGluR5 expression in advanced Alzheimer's disease (AD) using positron emission tomography (PET) with an mGluR5 specific radiotracer ([F]FPEB) in 5xFAD AD model. Subsequently, in the same animal, mGluR5 expression was quantified by immunoassay techniques. The non-displaceable binding potential values for mGluR5 was estimated by the Logan's graphical analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2016
Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode.
View Article and Find Full Text PDF