We examined the effect of aging on the integration of position and motion signals, which is essential for tracking visual objects, using the motion-induced position shift (MIPS) phenomenon. We first measured the MIPS and bias in speed perception at three eccentricities. Both young and older adults showed the increasing MIPS and decreasing perceived speed as the eccentricity increased, which is consistent with previous literature.
View Article and Find Full Text PDFStandard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU.
View Article and Find Full Text PDFThe fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome).
View Article and Find Full Text PDFExposure to electromagnetic radiation can have a profound impact on human health. Ultraviolet (UV) radiation from the sun causes skin cancer. Blue light affects the body's circadian melatonin rhythm.
View Article and Find Full Text PDFSweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis.
View Article and Find Full Text PDF