With rapid advancements in aerospace and supersonic aircraft technology, there is a growing demand for multifunctional thermal protective materials. Aerogels, known for their low density and high porosity, have garnered significant attention in this regard. However, developing a lightweight multifunctional aerogel that combines exceptional thermal and mechanical properties through a straightforward and time-efficient method remains a significant challenge.
View Article and Find Full Text PDFModern polymer coatings possess tremendous multifunctionalities and have attracted immense research interest in recent decades. However, with the expeditious development of technologies and industries, there is a vast demand for the flame retardancy and electrical conductivity of engineered polymer coatings. Traditional functional materials that render the polymer coatings with these properties require a sophisticated fabrication process, and their high mass gains can be a critical issue for weight-sensitive applications.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis.
View Article and Find Full Text PDFThis state-of-the-art review is geared toward elucidating the molecular understanding of the carbon-based flame-retardant mechanisms for polymers via holistic characterization combining detailed analytical assessments and computational material science. The use of carbon-based flame retardants, which include graphite, graphene, carbon nanotubes (CNTs), carbon dots (CDs), and fullerenes, in their pure and functionalized forms are initially reviewed to evaluate their flame retardancy performance and to determine their elevation of the flammability resistance on various types of polymers. The early transition metal carbides such as MXenes, regarded as next-generation carbon-based flame retardants, are discussed with respect to their superior flame retardancy and multifunctional applications.
View Article and Find Full Text PDFBackground & Aims: Liver sinusoidal endothelial cells (LSECs) are important in liver development, regeneration, and pathophysiology, but the differentiation process underlying their tissue-specific phenotype is poorly understood and difficult to study because primary human cells are scarce. The aim of this study was to use human induced pluripotent stem cell (hiPSC)-derived LSEC-like cells to investigate the differentiation process of LSECs.
Methods: hiPSC-derived endothelial cells (iECs) were transplanted into the livers of // mice and assessed over a 12-week period.
In this work, 2D ferromagnetic MGeTe (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGT) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics.
View Article and Find Full Text PDFThe effect of varying the weight percentage composition (wt.%) of low-cost expandable graphite (EG), ammonium polyphosphate (APP), fibreglass (FG), and vermiculite (VMT) in polyurethane (PU) polymer was studied using a traditional intumescent flame retardant (IFR) system. The synergistic effect between EG, APP, FG, and VMT on the flame retardant properties of the PU composites was investigated using SEM, TGA, tensile strength tests, and cone calorimetry.
View Article and Find Full Text PDFCurrent approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state.
View Article and Find Full Text PDFHepatocellular carcinoma is one of the most lethal cancers worldwide, causing almost 700,000 deaths annually. It mainly arises from cirrhosis, which, in turn, results from chronic injury to liver cells and corresponding fibrotic changes. Although it is known that chronic liver injury increases the elasticity of liver tissue, the role of increased elasticity of the microenvironment as a possible hepatocarcinogen is yet to be investigated.
View Article and Find Full Text PDFThe importance of cellular-scale mechanical properties is well-established, yet it is challenging to map subcellular elasticity in three dimensions. We present subcellular mechano-microscopy, an optical coherence microscopy (OCM)-based variant of three-dimensional (3-D) compression optical coherence elastography (OCE) that provides an elasticity system resolution of 5 × 5 × 5 µm: a 7-fold improvement in system resolution over previous OCE studies of cells. The improved resolution is achieved through a ∼5-fold improvement in optical resolution, refinement of the strain estimation algorithm, and demonstration that mechanical deformation of subcellular features provides feature resolution far greater than that demonstrated previously on larger features with diameter >250 µm.
View Article and Find Full Text PDFJ Appl Crystallogr
April 2022
Ultra-small-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) measurements, covering length scales from micrometres to nanometres, were made to investigate the structure of nanodiamonds (NDs) and their suspensions. These nanodiamonds were produced by two different techniques, namely by the detonation method and by the laser ablation of a carbon-hydro-carbon mixture. The (U)SANS results indicated the presence of structures four orders of magnitude larger than the dimensions of a single ND particle, consisting of aggregations of ND particles.
View Article and Find Full Text PDFBuilding polymers implemented into building panels and exterior façades have been determined as the major contributor to severe fire incidents, including the 2017 Grenfell Tower fire incident. To gain a deeper understanding of the pyrolysis process of these polymer composites, this work proposes a multi-scale modelling framework comprising of applying the kinetics parameters and detailed pyrolysis gas volatiles (parent combustion fuel and key precursor species) extracted from Molecular Dynamics models to a macro-scale Computational Fluid Dynamics fire model. The modelling framework was tested for pure and flame-retardant polyethylene systems.
View Article and Find Full Text PDFThe aim of this study was to evaluate the device performance of a new design by comparing with a typical commercial DPI. Computational fluid dynamics (CFD) coupled with the discrete element method (DEM) collision has been utilized in this study to characterize and examine the flow field and particle transportation, respectively. A typical commercial DPI and an in-house designed novel DPI with distinct design features were compared to explore their dispersion capabilities and suitability for delivery to the respiratory tract.
View Article and Find Full Text PDFBiomass-derived carbon has been recognised as a green, economic and promising flame retardant (FR) for polymer matrix. In this paper, it is considered that the two-dimensional (2D) structure of carbonised peanut shells (PS) can lead to a physical barrier effect on polymers. The carbonised sample was prepared by the three facile methods, and firstly adopted as flame retardants for epoxy resin.
View Article and Find Full Text PDFMaraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms.
View Article and Find Full Text PDFRoom temperature vulcanized (RTV) silicone rubber filled with aluminum trihydrate (ATH) is substantially engaged in electrical outdoor insulation applications. The pristine silicone rubber is highly combustible. ATH filled silicone rubber offers excellent electrical insulation but lacks in providing adequate flame retardancy.
View Article and Find Full Text PDFBackground: Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis.
View Article and Find Full Text PDFRecent discoveries of two-dimensional transitional metal based materials have emerged as an excellent candidate for fabricating nanostructured flame-retardants. Herein, we report an eco-friendly flame-retardant for flexible polyurethane foam (PUF), which is synthesised by hybridising MXene (Ti[Formula: see text]) with biomass materials including phytic acid (PA), casein, pectin, and chitosan (CH). Results show that coating PUFs with 3 layers of CH/PA/Ti[Formula: see text] via layer-by-layer approach reduces the peak heat release and total smoke release by 51.
View Article and Find Full Text PDFIn recent years, the applications of lithium-ion batteries have emerged promptly owing to its widespread use in portable electronics and electric vehicles. Nevertheless, the safety of the battery systems has always been a global concern for the end-users. The separator is an indispensable part of lithium-ion batteries since it functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport.
View Article and Find Full Text PDFHere we report a protocol to investigate the heat transfer between irradiated gold nanoparticles (GNPs) and bilayer lipid membranes by electrochemistry using tethered bilayer lipid membranes (tBLMs) assembled on gold electrodes. Irradiated modified GNPs, such as streptavidin-conjugated GNPs, are embedded in tBLMs containing target molecules, such as biotin. By using this approach, the heat transfer processes between irradiated GNPs and model bilayer lipid membrane with entities of interest are mediated by a horizontally focused laser beam.
View Article and Find Full Text PDFHuman amnion epithelial cells (hAECs) exert potent antifibrotic and anti-inflammatory effects when transplanted into preclinical models of tissue fibrosis. These effects are mediated in part via the secretion of soluble factors by hAECs which modulate signaling pathways and affect cell types involved in inflammation and fibrosis. Based on these reports, we hypothesized that these soluble factors may also support liver regeneration during chronic liver injury.
View Article and Find Full Text PDFHigh-performance MXene-based polymer nanocomposites are highly desirable for diverse industry applications due to their exceptional mechanical, thermal and other properties. Nevertheless, it remains an intractable challenge to create flame retardant polymer/MXene nanocomposites due to the difficulty to achieve uniform dispersion of MXenes. Here, we reported a facile strategy for the surface manipulation of two-dimensional titanium carbide nanosheets (TiCT) with 3-aminopropylheptaisobutyl-polyhedral oligomeric silsesquioxane (AP-POSS) (POSS-TiCT) through electrostatic interactions.
View Article and Find Full Text PDFThe structural and physiological complexity of currently available liver organoids is limited, thereby reducing their relevance for drug studies, disease modelling, and regenerative therapy. In this study we combined mouse liver progenitor cells (LPCs) with mouse liver sinusoidal endothelial cells (LSECs) to generate hepatobiliary organoids with liver-specific vasculature. Organoids consisting of 5x10 cells were created from either LPCs, or a 1:1 combination of LPC/LSECs.
View Article and Find Full Text PDF