Publications by authors named "YeoHeung Yun"

The disruption of the blood-brain barrier (BBB) in Alzheimer's Disease (AD) is largely influenced by amyloid beta (Aβ). In this study, we developed a high-throughput microfluidic BBB model devoid of a physical membrane, featuring endothelial cells interacting with an extracellular matrix (ECM). This paper focuses on the impact of varying concentrations of Aβ oligomers on BBB dysfunction by treating them in the luminal.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-derived brain spheroids can recapitulate the complex cytoarchitecture of the brain, as well as the genetic/epigenetic footprint of human brain development. However, hiPSC-derived 3D models such as spheroid and organoids does not have a perfusable microvascular network, which plays a vital role in maintaining homeostasis in vivo. With the critical balance of positive and negative angiogenic modulators, 3D microvascular network can be achieved by angiogenesis.

View Article and Find Full Text PDF

In vivo use of biodegradable magnesium (Mg) metal can be plagued by too rapid a degradation rate that removes metal support before physiological function is repaired. To advance the use of Mg biomedical implants, the degradation rate may need to be adjusted. We previously demonstrated that pure Mg filaments used in a nerve repair scaffold were compatible with regenerating peripheral nerve tissues, reduced inflammation, and improved axonal numbers across a short-but not long-gap in sciatic nerves in rats.

View Article and Find Full Text PDF

Mechanical rigidity of a matrix, to which cells adhere, plays a significant role in regulating phenotypic cellular behaviors such as spreading and junction formation because vascular cells sense and respond to changes in their mechanical environment. Controlling mechanical properties of extracellular matrix by using a crosslinker is important for cell and tissue mechanobiology. In this paper, we explored genipin, a natural plant extract, to crosslink collagen-I in order to enhance mechanical properties with low cytotoxicity.

View Article and Find Full Text PDF

Background: Recently, the blood brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications it has with the health of the central nervous system. It is essential to create an accurate BBB model in order to better understand the properties of the BBB and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles.

Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2).

View Article and Find Full Text PDF

Brain-on-a-chip is a miniaturized engineering platform to mimic the structural and functional aspects of brain tissue. We describe a method to construct a three-dimensional (3D) brain-on-a-chip in this chapter. We firstly portray the method of a brain-on-a-chip model with cocultured mice neurons, microglia, and astrocytes to mimic brain tissue and membrane-free perfusion with endothelial cells, in which we successfully build the blood-brain barrier to screen neurotoxicity.

View Article and Find Full Text PDF

Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces.

View Article and Find Full Text PDF

Organophosphates (OPs) induce acute and chronic neurotoxicity, primarily by inhibiting acetylcholinesterase (AChE) activity as well as by necrosis, and apoptosis. Butyrylcholinesterase (BuChE), an exogenous bioscavenger of OPs, can be used as a treatment for OP exposure. It is prerequisite to develop in vitro brain models that can study BuChE post-treatment for acute OP exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored a 3D brain microphysiological system (BMPS) for assessing neurotoxic chemicals, utilizing a mix of neuronal and vascular cells to create a model mimicking brain conditions.
  • The study focused on testing organophosphates (like Malathion and Chlorpyrifos) and other substances affecting neurotransmitter systems, finding that these chemicals could penetrate the blood-brain barrier (BBB) and disrupt normal brain function.
  • Results correlated well with real-life data, suggesting this BMPS could serve as an effective and cheaper substitute for traditional animal testing in neurotoxicology.
View Article and Find Full Text PDF

Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow.

View Article and Find Full Text PDF

Predicting degradation behavior of biodegradable metals is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard).

View Article and Find Full Text PDF

Organophosphate-based compounds (OPs) represent a significant threat to warfighters (nerve agents) and civilian populations (pesticides). There is a pressing need to develop in vitro brain models that correlate to the in vivo brain to rapidly study OPs for neurotoxicity. Here we report on a microfluidic-based three-dimensional, four-cell tissue construct consisting of 1) a blood-brain barrier that has dynamic flow and membrane-free culture of the endothelial layer, and 2) an extracellular matrix (ECM)-embedded tissue construct with neuroblastoma, microglia, and astrocytes.

View Article and Find Full Text PDF

Here we systematically assess the degradation of biodegradable magnesium pins (as-drawn pure Mg, as-cast Mg-Zn-Mn, and extruded Mg-Zn-Mn) in a bioreactor applying cyclical loading and simulated body fluid (SBF) perfusion. Cyclical mechanical loading and interstitial flow accelerated the overall corrosion rate, leading to loss of mechanical strength. When compared to the in vivo degradation (degradation rate, product formation, uniform or localized pitting, and stress distribution) of the same materials in mouse subcutaneous and dog tibia implant models, we demonstrate that the in vitro model facilitates the analysis of the complex degradation behavior of Mg-based alloys in vivo.

View Article and Find Full Text PDF

Magnesium (Mg)-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys' surface and simulated physiological environment using a microfluidic system.

View Article and Find Full Text PDF

This paper proposes a smartphone-based colorimetric pH detection method using a color adaptation algorithm for point-of-care applications. Although a smartphone camera can be utilized to measure the color information of colorimetric sensors, ambient light changes and unknown built-in automatic image correction operations make it difficult to obtain stable color information. This paper utilizes a 3D printed mini light box and performs a calibration procedure with a paper-printed comparison chart and a reference image which overcomes the drawbacks of smartphone cameras and the difficulty in preparing for the calibration procedure.

View Article and Find Full Text PDF

We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, NaSiO, KF and NaHPO·2HO containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte.

View Article and Find Full Text PDF

A bioresorbable metallic helical stent was explored as a new device opportunity (magnesium scaffold), which can be absorbed by the body without leaving a trace and simultaneously allowing restoration of vasoreactivity with the potential for vessel remodeling. In this study, developed Mg-based helical stent was inserted and expanded in vessels with subsequent degradation in various environments including static, dynamic, and porcine ex vivo models. By assessing stent degradation in three different environments, we observed: (1) stress- and flow-induced degradation; (2) a high degradation rate in the dynamic reactor; (3) production of intermediate products (MgO/Mg(OH) and Ca/P) during degradation; and (4) intermediate micro-gas pocket formation in the neighboring tissue ex vivo model.

View Article and Find Full Text PDF

Background: Phase-change ultrasound contrast agents (PCCAs) offer a solution to the inherent limitations associated with using microbubbles for sonoporation; they are characterized by prolonged circulation lifetimes, and their nanometer-scale sizes may allow for passive accumulation in solid tumors. As a first step towards the goal of extravascular cell permeabilization, we aim to characterize the sonoporation potential of a low-boiling point formulation of PCCAs in vitro.

Methods: Parameters to induce acoustic droplet vaporization and subsequent microbubble cavitation were optimized in vitro using high-speed optical microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Current in vitro models struggle to accurately predict how magnesium (Mg) stents degrade in living organisms, leading researchers to develop an ex vivo bioreactor that simulates the stent microenvironment for better insights.
  • The study found that while Mg degradation rates were similar across various testing methods, in vivo conditions resulted in slower degradation compared to ex vivo, indicating differences influenced by the presence of blood flow.
  • The findings suggest the ex vivo bioreactor effectively bridges the gap between static lab tests and real animal studies, enhancing the understanding of Mg stent degradation and biological interactions for future stent research.
View Article and Find Full Text PDF

Polydeoxyribonucleotides (PDRN) have been explored as an effective treatment for tissue repair in peripheral artery occlusive disease, diabetic foot ulcers, and eye lotion. We report on the effect of polydeoxyribonucleotides (PDRN) on wound healing by using the electric cell-substrate impedance sensing (ECIS) system and viability testing. Human osteoblasts (U2OS) and primary human dermal fibroblasts (HDF) were used to study the effect of PDRN on migration and proliferation.

View Article and Find Full Text PDF

Here, we report on carbon nanotube paper-based electroanalytical devices. A highly aligned-carbon nanotube (HA-CNT) array, grown using chemical vapor deposition (CVD), was processed to form bi-layered paper with an integrated cellulose-based Origami-chip as the electroanalytical device. We used an inverse-ordered fabrication method from a thick carbon nanotube (CNT) sheet to a thin CNT sheet.

View Article and Find Full Text PDF

Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg.

View Article and Find Full Text PDF

Ca(2+) signaling controls activation and effector functions of T lymphocytes. Ca(2+) levels also regulate NFAT activation and CD40 ligand (CD40L) expression in T cells. CD40L in activated memory T cells binds to its cognate receptor, CD40, on other cell types resulting in the production of antibodies and pro-inflammatory mediators.

View Article and Find Full Text PDF

An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions.

View Article and Find Full Text PDF

Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants.

View Article and Find Full Text PDF