Publications by authors named "Yentrapalli R"

Purpose: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence.

Materials And Methods: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.

View Article and Find Full Text PDF

Purpose: Multiple cell types secrete exosome-like extracellular vesicles (ELVs) to the extracellular environment. Pathological conditions can produce characteristic changes to the vesicle cargo. We investigated if ionizing radiation is capable of inducing changes in the protein and microRNA (miRNA) cargo of ELVs.

View Article and Find Full Text PDF

Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation.

View Article and Find Full Text PDF

Age-related changes in vascular functioning are a harbinger of cardiovascular disease but the biological mechanisms during the progression of endothelial senescence have not been studied. We investigated alterations in the proteome and miRNA profiles in the course of replicative senescence using primary human umbilical vein endothelial cells as an in vitro vascular model. Quantitative proteomic profiling from early growth stage to senescence was performed by isotope-coded protein label coupled to LC-ESI-MS/MS analysis.

View Article and Find Full Text PDF

A central question in radiation protection research is dose and dose-rate relationship for radiation-induced cardiovascular diseases. The response of endothelial cells to different low dose rates may contribute to help estimate risks for cardiovascular diseases by providing mechanistic understanding. In this study we investigated whether chronic low-dose-rate radiation exposure had an effect on the inflammatory response of endothelial cells and their function.

View Article and Find Full Text PDF

Epidemiological data from radiotherapy patients show the damaging effect of ionizing radiation on heart and vasculature. The endothelium is the main target of radiation damage and contributes essentially to the development of cardiac injury. However, the molecular mechanisms behind the radiation-induced endothelial dysfunction are not fully understood.

View Article and Find Full Text PDF

Purpose: Ionizing radiation has been recognized to increase the risk of cardiovascular diseases (CVD). However, there is no consensus concerning the dose-risk relationship for low radiation doses and a mechanistic understanding of low dose effects is needed.

Material And Methods: Previously, human umbilical vein endothelial cells (HUVEC) were exposed to chronic low dose rate radiation (1.

View Article and Find Full Text PDF

The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce.

View Article and Find Full Text PDF

Radiation exposure of the thorax is associated with a markedly increased risk of cardiac morbidity and mortality with a latency period of decades. Although many studies have confirmed the damaging effect of ionizing radiation on the myocardium and cardiac endothelial structure and function, the molecular mechanism behind this damage is not yet elucidated. Peroxisome proliferator-activated receptor alpha (PPAR alpha), a transcriptional regulator of lipid metabolism in heart tissue, has recently received great attention in the development of cardiovascular disease.

View Article and Find Full Text PDF

Chronic low-dose ionizing radiation induces cardiovascular disease in human populations but the mechanism is largely unknown. We suggested that chronic radiation exposure may induce endothelial cell senescence that is associated with vascular damage in vivo. We investigated whether chronic radiation exposure is causing a change in the onset of senescence in endothelial cells in vitro.

View Article and Find Full Text PDF

Qualitative proteome profiling of formalin-fixed, paraffin-embedded (FFPE) tissue is advancing the field of clinical proteomics. However, quantitative proteome analysis of FFPE tissue is hampered by the lack of an efficient labelling method. The usage of conventional protein labelling on FFPE tissue has turned out to be inefficient.

View Article and Find Full Text PDF