The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts.
View Article and Find Full Text PDFThe advent of Next Generation Sequencing (NGS) technologies has opened new possibilities for researchers. However, the more biology becomes a data-intensive field, the more biologists have to learn how to process and analyze NGS data with complex computational tools. Even with the availability of common pipeline specifications, it is often a time-consuming and cumbersome task for a bench scientist to install and configure the pipeline tools.
View Article and Find Full Text PDFThe National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data.
View Article and Find Full Text PDFIntroduction: Meningococcal infections are major causes of death in children globally. In Belarus, the incidence of cases and fatality rate of meningococcal infections are low and comparable to the levels in other European countries.
Aim: In the present study, the molecular and epidemiological traits of Neisseria meningitidis strains circulating in Belarus were characterized and compared to isolates from other European countries.
The era of "big data" presents immense opportunities for scientific discovery and technological progress, with the potential to have enormous impact on research and development in the public sector. In order to capitalize on these benefits, there are significant challenges to overcome in data analytics. The National Institute of Allergy and Infectious Diseases held a symposium entitled "Data Science: Unlocking the Power of Big Data" to create a forum for big data experts to present and share some of the creative and innovative methods to gleaning valuable knowledge from an overwhelming flood of biological data.
View Article and Find Full Text PDFThe goal of the Papillomavirus Episteme (PaVE) is to provide an integrated resource for the analysis of papillomavirus (PV) genome sequences and related information. The PaVE is a freely accessible, web-based tool (http://pave.niaid.
View Article and Find Full Text PDFBackground: DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes.
Results: Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments.
The variable regions (VR) of the surface-exposed PorA protein of Meningococci are used for subtyping and are considered the most abundant epitopes of outer membrane vesicle-based vaccine preparations. We have developed both a database that maintains all the known VR3 alleles and a web-based application for the rapid identification and submission of new VR3 variants based on sequence comparison.
View Article and Find Full Text PDFBackground: Genetic mapping is a powerful method to identify mutations that cause drug resistance and other phenotypic changes in the human malaria parasite Plasmodium falciparum. For efficient mapping of a target gene, it is often necessary to genotype a large number of polymorphic markers. Currently, a community effort is underway to collect single nucleotide polymorphisms (SNP) from the parasite genome.
View Article and Find Full Text PDFThe ATM (mutated in Ataxia-Telangiectasia) protein kinase is an important player in signaling the presence of DNA double strand breaks (DSBs) in higher eukaryotes. Recent studies suggest that ATM monitors the presence of DNA DSBs indirectly, through DNA DSB-induced changes in chromatin structure. One of the proteins that sense these chromatin structure changes is 53BP1, a DNA damage checkpoint protein conserved in all eukaryotes and the putative ortholog of the S.
View Article and Find Full Text PDFThe mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs.
View Article and Find Full Text PDFThe DNA binding domains of human p53 and Cep-1, its C. elegans ortholog, recognize essentially identical DNA sequences despite poor sequence similarity. We solved the three-dimensional structure of the Cep-1 DNA binding domain in the absence of DNA and compared it to that of human p53.
View Article and Find Full Text PDFThe Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography.
View Article and Find Full Text PDFThe Chfr mitotic checkpoint protein is frequently inactivated in human cancer. We determined the three-dimensional structure of its FHA domain in its native form and in complex with tungstate, an analog of phosphate. The structures revealed a beta sandwich fold similar to the previously determined folds of the Rad53 N- and C-terminal FHA domains, except that the Rad53 domains were monomeric, whereas the Chfr FHA domain crystallized as a segment-swapped dimer.
View Article and Find Full Text PDF