Hepatocellular carcinoma (HCC), the most common type of liver cancer, poses significant challenges in detection and diagnosis. Medical imaging, especially computed tomography (CT), is pivotal in non-invasively identifying this disease, requiring substantial expertise for interpretation. This research introduces an innovative strategy that integrates two-dimensional (2D) and three-dimensional (3D) deep learning models within a federated learning (FL) framework for precise segmentation of liver and tumor regions in medical images.
View Article and Find Full Text PDFCoronavirus (COVID-19) has created an unprecedented global crisis because of its detrimental effect on the global economy and health. COVID-19 cases have been rapidly increasing, with no sign of stopping. As a result, test kits and accurate detection models are in short supply.
View Article and Find Full Text PDFPreviously, doctors interpreted computed tomography (CT) images based on their experience in diagnosing kidney diseases. However, with the rapid increase in CT images, such interpretations were required considerable time and effort, producing inconsistent results. Several novel neural network models were proposed to automatically identify kidney or tumor areas in CT images for solving this problem.
View Article and Find Full Text PDFThis paper proposes an encoder-decoder architecture for kidney segmentation. A hyperparameter optimization process is implemented, including the development of a model architecture, selecting a windowing method and a loss function, and data augmentation. The model consists of EfficientNet-B5 as the encoder and a feature pyramid network as the decoder that yields the best performance with a Dice score of 0.
View Article and Find Full Text PDFNetwork slicing is a promising technology that network operators can deploy the services by slices with heterogeneous quality of service (QoS) requirements. However, an orchestrator for network operation with efficient slice resource provisioning algorithms is essential. This work stands on Internet service provider (ISP) to design an orchestrator analyzing the critical influencing factors, namely access control, scheduling, and resource migration, to systematically evolve a sustainable network.
View Article and Find Full Text PDFSensors (Basel)
November 2021
Determining the price movement of stocks is a challenging problem to solve because of factors such as industry performance, economic variables, investor sentiment, company news, company performance, and social media sentiment. People can predict the price movement of stocks by applying machine learning algorithms on information contained in historical data, stock candlestick-chart data, and social-media data. However, it is hard to predict stock movement based on a single classifier.
View Article and Find Full Text PDFAs wireless sensor networks have become more prevalent, data from sensors in daily life are constantly being recorded. Due to cost or energy consumption considerations, optimization-based approaches are proposed to reduce deployed sensors and yield results within the error tolerance. The correlation-aware method is also designed in a mathematical model that combines theoretical and practical perspectives.
View Article and Find Full Text PDFA combined edge and core cloud computing environment is a novel solution in 5G network slices. The clients' high availability requirement is a challenge because it limits the possible admission control in front of the edge cloud. This work proposes an orchestrator with a mathematical programming model in a global viewpoint to solve resource management problems and satisfying the clients' high availability requirements.
View Article and Find Full Text PDF