Publications by authors named "Yenisleidy de Las Mercedes Zulueta Diaz"

Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms.

View Article and Find Full Text PDF

Nanodomains are a biological membrane phenomenon which have a large impact on various cellular processes. They are often analysed by looking at the lateral dynamics of membrane lipids or proteins. The localization of the plasma membrane protein aquaporin-2 in nanodomains has so far been unknown.

View Article and Find Full Text PDF

The mechanisms by which angiotensin II type 1 receptor is distributed and the diffusional pattern in the plasma membrane (PM) remain unclear, despite their crucial role in cardiovascular homeostasis. In this work, we obtained quantitative information of angiotensin II type 1 receptor (AT1R) lateral dynamics as well as changes in the diffusion properties after stimulation with ligands in living cells using photoactivated localization microscopy (PALM) combined with image spatial-temporal correlation analysis. To study the organization of the receptor at the nanoscale, expansion microscopy (ExM) combined with PALM was performed.

View Article and Find Full Text PDF

Cell membranes develop extraordinarily complex lipids and proteins geared to perform functions required by cells [...

View Article and Find Full Text PDF

Surface-active amphiphiles find applications in a wide range of areas of industry such as agrochemicals, personal care, and pharmaceuticals. In many of these applications, interaction with cell membranes is a key factor for achieving their purpose. How do amphiphiles interact with lipid membranes? What are their bases for membrane specificity? Which biophysical properties of membranes are susceptible to modulation by amphiphilic membrane-effectors? What aspects of this interaction are important for performing their function? In our work on membrane biophysics over the years, questions like these have arisen and we now share some of our findings and discuss them in this review.

View Article and Find Full Text PDF

Hypothesis: Amphotericin B (AmB) is a highly effective antimicrobial, with broad antimycotic and antiparasitic effect. However, AmB poor water-solubilisation and aggregation tendency limits its use for topical applications. We studied the capacity of nanostructures formed by alkyl esters of L-ascorbic acid (ASCn) to solubilise AmB and tested the relationship between the prevalence of the monomeric form of AmB and its effectiveness as antimicrobial agent.

View Article and Find Full Text PDF

Miltefosine (hexadecylphosphocholine or HePC) is an alkylphosphocholine approved for the treatment of visceral and cutaneous Leishmaniasis. HePC exerts its effect by interacting with lipid membranes and affecting membrane-dependent processes. The molecular geometry of HePC suggests that the pharmacological function of HePC is to alter membrane curvature.

View Article and Find Full Text PDF

L-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which act as skin permeation enhancers. We investigated the physical changes induced by incorporating ASCn into stratum corneum (SC) lipid membranes and correlated this with the mechanism proposed in the literature for skin permeation enhancement phenomena. We used lipid monolayers to explore the 2D structure and elasticity of the lipid-enhancer systems.

View Article and Find Full Text PDF

β-Galactosylsphingosine or psychosine (PSY) is a single chain sphingolipid with a cationic group, which is degraded in the lysosome lumen by β-galactosylceramidase during sphingolipid biosynthesis. A deficiency of this enzyme activity results in Krabbe's disease and PSY accumulation. This favors its escape to extralysosomal spaces, with its pH changing from acidic to neutral.

View Article and Find Full Text PDF

Hexadecylphosphocholine (HePC, miltefosine) is an alkylphospholipid used clinically for the topical treatment of cancer and against leishmaniasis. The mechanism of action of HePC, not yet elucidated, involves its insertion into the plasma membrane, affecting lipid homeostasis. It has also been proposed that HePC directly affects lipid raft stability and function in cell membranes.

View Article and Find Full Text PDF

In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations.

View Article and Find Full Text PDF