Tendon stem/progenitor cells (TSCs) have been found in different anatomic locations and showed a promising regenerative potential. We identified a role of TSCs in the regulation of inflammation during healing of acute tendon injuries. Delivery of connective tissue growth factor (CTGF) into full-transected rat patellar tendons significantly increased the number of CD146 TSCs, leading to enhanced healing.
View Article and Find Full Text PDFThree dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds.
View Article and Find Full Text PDFCurrent stem cell-based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model.
View Article and Find Full Text PDF