This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance segmentation model, with applications to segment small particle defects embedded on a wafer die. YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding polygons.
View Article and Find Full Text PDFEmotion has been a subject undergoing intensive research in psychology and cognitive neuroscience over several decades. Recently, more and more studies of emotion have adopted automatic rather than manual methods of facial emotion recognition to analyze images or videos of human faces. Compared to manual methods, these computer-vision-based, automatic methods can help objectively and rapidly analyze a large amount of data.
View Article and Find Full Text PDFThe optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To address this, a facile approach to solution processing using blends of PDPP-TVT and PTPA-3CN is developed, resulting in a 3.
View Article and Find Full Text PDFOrganic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites.
View Article and Find Full Text PDFQuantum dot (QD) light-emitting diodes (LEDs) are emerging as one of the most promising candidates for next-generation displays. However, their intrinsic light outcoupling efficiency remains considerably lower than the organic counterpart, because it is not yet possible to control the transition-dipole-moment (TDM) orientation in QD solids at device level. Here, using the colloidal lead halide perovskite anisotropic nanocrystals (ANCs) as a model system, we report a directed self-assembly approach to form the anisotropic nanocrystal superlattices (ANSLs).
View Article and Find Full Text PDFColloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
A straightforward mechanism for the photorecovery behavior of photoresponsive nonvolatile organic field-effect transistor (OFET) memories is proposed by employing a commercially available conjugated polymer, the poly(9,9-dioctylfluorene) (PFO), the conjugated monomer fluorene (FO), and the nonconjugated poly(vinyl alcohol) (PVA), as charge storage layers beneath the semiconducting pentacene layer. As photoexcitons are generated upon light exposure, the respective charges recombine with the trapped charges in electrets and neutralize the memory device. However, whether the excitons are generated in the semiconducting layer or the electret part, the origin that mainly governs the photorecovery behavior remains unclear.
View Article and Find Full Text PDFMiniaturized photonic sources based on semiconducting two-dimensional (2D) materials offer new technological opportunities beyond the modern III-V platforms. For example, the quantum-confined 2D electronic structure aligns the exciton transition dipole moment parallel to the surface plane, thereby outcoupling more light to air which gives rise to high-efficiency quantum optics and electroluminescent devices. It requires scalable materials and processes to create the decoupled multi-quantum-well superlattices, in which individual 2D material layers are isolated by atomically thin quantum barriers.
View Article and Find Full Text PDFThe outstanding excitonic properties, including photoluminescence quantum yield (η), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state η of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and η, distinct from that in typical quantum dot solid systems.
View Article and Find Full Text PDFSolution-processable organic-inorganic hybrid perovskite materials with a wealth of exotic semiconducting properties have appeared as the promising front-runners for next-generation electronic devices. Further, regarding its well photoresponsibility, various perovskite-based photosensing devices are prosperously developed in recent years. However, most exploited devices to date only transiently transduce the optical signals into electrical circuits while under illumination, which necessitates using additional converters to further store the output signals for recording the occurrence of light stimulation.
View Article and Find Full Text PDFMutations in the tumor suppressor BRCA1 predispose women to breast and ovarian cancers. The mechanism underlying the tissue-specific nature of BRCA1's tumor suppression is obscure. We previously showed that the antioxidant pathway regulated by the transcription factor NRF2 is defective in BRCA1-deficient cells.
View Article and Find Full Text PDF