Cellular heterogeneity within the sinoatrial node (SAN) is functionally important but has been difficult to model , presenting a major obstacle to studies of heart rate regulation and arrhythmias. Here we describe a scalable method to derive sinoatrial node pacemaker cardiomyocytes (PCs) from human induced pluripotent stem cells that recapitulates differentiation into distinct PC subtypes, including SAN Head, SAN Tail, transitional zone cells, and sinus venosus myocardium. Single cell (sc) RNA-sequencing, sc-ATAC-sequencing, and trajectory analyses were used to define epigenetic and transcriptomic signatures of each cell type, and to identify novel transcriptional pathways important for PC subtype differentiation.
View Article and Find Full Text PDFBackground: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors.
View Article and Find Full Text PDFAtrial fibrillation (AF) is a highly prevalent cardiac arrhythmia and cause of significant morbidity and mortality. Its increasing prevalence in aging societies constitutes a growing challenge to global healthcare systems. Despite substantial unmet needs in AF prevention and treatment, drug developments hitherto have been challenging, and the current pharmaceutical pipeline is nearly empty.
View Article and Find Full Text PDFA multitude of signals are coordinated to maintain self-renewal in embryonic stem cells (ESCs). To unravel the essential internal and external signals required for sustaining the ESC state, we expand upon a set of ESC pluripotency-associated phosphoregulators (PRs) identified previously by short hairpin RNA (shRNA) screening. In addition to the previously described Aurka, we identify 4 additional PRs (Bub1b, Chek1, Ppm1g, and Ppp2r1b) whose depletion compromises self-renewal and leads to consequent differentiation.
View Article and Find Full Text PDFHuman diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes.
View Article and Find Full Text PDFRationale: During each beat, cardiac myocytes (CMs) generate the mechanical output necessary for heart function through contractile mechanisms that involve shortening of sarcomeres along myofibrils. Human-induced pluripotent stem cells (hiPSCs) can be differentiated into CMs (hiPSC-CMs) that model cardiac contractile mechanical output more robustly when micropatterned into physiological shapes. Quantifying the mechanical output of these cells enables us to assay cardiac activity in a dish.
View Article and Find Full Text PDFMutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity.
View Article and Find Full Text PDFBackground: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro.
Methods: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming.
Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2).
View Article and Find Full Text PDFSingle cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity.
View Article and Find Full Text PDFA 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells (mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying regulatory logic among network components was then learned using the initial network topology and single cell gene expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned network regulatory logic derived from cells cultured in serum/LIF vs.
View Article and Find Full Text PDFmicroRNA-1 (miR-1) is an evolutionarily conserved, striated muscle-enriched miRNA. Most mammalian genomes contain two copies of miR-1, and in mice, deletion of a single locus, miR-1-2, causes incompletely penetrant lethality and subtle cardiac defects. Here, we report that deletion of miR-1-1 resulted in a phenotype similar to that of the miR-1-2 mutant.
View Article and Find Full Text PDFMany signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) derived from preimplantation blastocysts have unique self-renewal and multilineage differentiation properties that are controlled by key components of a core regulatory network including Oct4, Sox2, and Nanog. Understanding molecular underpinnings of these properties requires identification and characterization of additional factors that act in conjunction with these key factors in ESCs. We have previously identified Zfp281, a Krüppel-like zinc finger transcription factor, as an interaction partner of Nanog.
View Article and Find Full Text PDFIncreasing evidence suggests that epigenetic regulation is key to the maintenance of the stem cell state. Chromatin is the physiological form of eukaryotic genomes and the substrate for epigenetic marking, including DNA methylation, post-translational modifications of histones and the exchange of core histones with histone variants. The chromatin template undergoes significant reorganization during embryonic stem cell (ESC) differentiation and somatic cell reprogramming (SCR).
View Article and Find Full Text PDFReprogramming patient-specific somatic cells into induced pluripotent stem (iPS) cells has great potential to develop feasible regenerative therapies. However, several issues need to be resolved such as ease, efficiency, and safety of generation of iPS cells. Many different cell types have been reprogrammed, most conveniently even peripheral blood mononuclear cells.
View Article and Find Full Text PDFThe embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal.
View Article and Find Full Text PDFThe generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase.
View Article and Find Full Text PDFDirect reprogramming of somatic cells into induced pluripotent stem (iPS) cells by only four transcription factors (Oct4, Sox2, Klf4, and c-Myc) has great potential for tissue-specific regenerative therapies, eliminating the ethical issues surrounding the use of embryonic stem cells and the rejection problems of using non-autologous cells. The reprogramming efficiency generally is very low, however, and the problems surrounding the introduction of viral genetic material are only partially investigated. Recent efforts to reduce the number of virally expressed transcription factors succeeded at reprogramming neural stem cells into iPS cells by overexpressing Oct4 alone.
View Article and Find Full Text PDFLittle is known about the molecular mechanism(s) governing differentiation decisions in embryonic stem cells (ESCs). To identify factors critical for ESC lineage formation, we carried out a functional genetic screen for factors affecting Nanog promoter activity during mESC differentiation. We report that members of the PBAF chromatin remodeling complex, including Smarca4/Brg1, Smarcb1/Baf47, Smarcc1/Baf155, and Smarce1/Baf57, are required for the repression of Nanog and other self-renewal gene expression upon mouse ESC (mESC) differentiation.
View Article and Find Full Text PDFThe Wnt signaling pathway is necessary both for maintaining undifferentiated stem cells and for directing their differentiation. In mouse embryonic stem cells (ESCs), Wnt signaling preferentially maintains "stemness" under certain permissive conditions. T-cell factor 3 (Tcf3) is a component of the Wnt signaling and a dominant downstream effector in ESCs.
View Article and Find Full Text PDFHundreds of microRNAs (miRNAs) are expressed in mammalian cells, where they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. Functional studies to date have demonstrated that several of these miRNAs are important during development. However, the role of miRNAs in the regulation of stem cell growth and differentiation is not well understood.
View Article and Find Full Text PDFAgeing is often defined in the context of telomerase activity and telomere length regulation. Most somatic cells have limited replication ability and undergo senescence eventually. Stem cells are unique as they possess more abundant telomerase activity and are able to maintain telomere lengths for a longer period.
View Article and Find Full Text PDFWe present rna22, a method for identifying microRNA binding sites and their corresponding heteroduplexes. Rna22 does not rely upon cross-species conservation, is resilient to noise, and, unlike previous methods, it first finds putative microRNA binding sites in the sequence of interest, then identifies the targeting microRNA. Computationally, we show that rna22 identifies most of the currently known heteroduplexes.
View Article and Find Full Text PDF