We demonstrate the fabrication of a tunable-focus dielectric liquid lens (DLL) on a flexible substrate made of polydimethylsiloxane, which was wrapped onto a goggle surface to show its functionality. As a positive meniscus converging lens, the DLL has the focal length variable from 14.2 to 6.
View Article and Find Full Text PDFA 25-pixel illumination system composed of a 5 × 5 dielectric liquid-lens (DLL) zoom module array, 25 light-emission diodes (LEDs), and a secondary optical lens demonstrates 3D light field manipulation. LEDs function as 2D illumination pixels while the DLL module array performs longitudinal illuminance adjustability by zooming each illumination pixel. A test on the similarity of two illuminance patterns between experiments and simulations shows a normalized cross correlation (NCC) higher than 0.
View Article and Find Full Text PDFA cell rotation method by using optoelectronic tweezers (OET) is reported. The binary image of a typical OET device, whose light and dark sides act as two sets of parallel plates with different ac voltages, was used to create a rotating electric field. Its feasibility for application to electrorotation of cells was demonstrated by rotating Ramos and yeast cells in their pitch axes.
View Article and Find Full Text PDFMicrolens arrays were self-assembled from microballs using dielectrophoretic energy wells. Energy wells defined by patterned dielectric were used to produce microlens arrays with array patterns of desire. Microballs of 25microm in diameter were measured to have numerical aperture of 0.
View Article and Find Full Text PDF