Publications by authors named "Yen-Liang Liu"

Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular compositions and study molecular states in complex cellular environment as the lifetime readings are not biased by fluorophore concentration or excitation power. However, the current methods to generate FLIM images are either computationally intensive or unreliable when the number of photons acquired at each pixel is low. Here we introduce a new deep learning-based method termed flimGANE (fluorescence lifetime imaging based on Generative Adversarial Network Estimation) that can rapidly generate accurate and high-quality FLIM images even in the photon-starved conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the safety and preliminary effectiveness of Kartigen, a graft made from mesenchymal stem cell-derived chondrocyte precursors, when applied to cartilage defects in the knee of 15 patients.
  • There were no significant safety concerns with Kartigen, as there were no infections or other complications reported over a two-year follow-up period, and patient knee function improved significantly over time.
  • In comparison to the microfracture control group, the Kartigen group showed better integration with host tissue and maintained higher International Knee Documentation Committee (IKDC) scores, indicating superior outcomes in knee function post-surgery.
View Article and Find Full Text PDF

Motivation: Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

We demonstrated the safety and efficacy of autologous chondrocyte precursor (CP) cell therapy in repairing Grade 4 cartilage defects of medial femoral condyles. The autologous bone marrow mesenchymal stem cells of each participant were isolated, amplified, and then differentiated into CPs in atelocollagen. Neotissues made of CPs were implanted into cartilage defects with an average cell density of 4.

View Article and Find Full Text PDF

Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets.

View Article and Find Full Text PDF

While monoclonal antibodies are the fastest-growing class of therapeutic agents, we lack a method that can directly quantify the on- and off-target binding affinities of newly developed therapeutic antibodies in crude cell lysates. As a result, some therapeutic antibody candidates could have a moderate on-target binding affinity but a high off-target binding affinity, which not only gives a reduced efficacy but triggers unwanted side effects. Here, we report a single-molecule counting method that precisely quantifies antibody-bound receptors, free receptors, and unbound antibodies in crude cell lysates, termed digital receptor occupancy assay (DRO).

View Article and Find Full Text PDF

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported.

View Article and Find Full Text PDF

Single-molecule detection enables direct characterization of annealing/melting kinetics of nucleic acids without the need for synchronization of molecular states, but the current experiments are not carried out in a native cellular context. Here we describe an integrated 3D single-molecule tracking and lifetime measurement method that can follow individual DNA molecules diffusing inside a mammalian cell and observe multiple annealing and melting events on the same molecules. By comparing the hybridization kinetics of the same DNA strand , we found the association constants can be 13- to 163-fold higher in the molecular crowding cellular environment.

View Article and Find Full Text PDF

Derailed transmembrane receptor trafficking could be a hallmark of tumorigenesis and increased tumor invasiveness, but receptor dynamics have not been used to differentiate metastatic cancer cells from less invasive ones. Using single-particle tracking techniques, we  developed a phenotyping asssay named Transmembrane Receptor Dynamics (TReD), studied the dynamics of epidermal growth factor receptor (EGFR) in seven breast epithelial cell lines and developed a phenotyping assay named Transmembrane Receptor Dynamics (TReD). Here we show a clear evidence that increased EGFR diffusivity and enlarged EGFR confinement size in the plasma membrane (PM) are correlated with the enhanced metastatic potential in these cell lines.

View Article and Find Full Text PDF

Deep imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of imaging, their use for deep MPM has never before been demonstrated. Herein, we characterize the multiphoton properties of three pdot variants and perform deep MPM imaging of cortical rodent microvasculature.

View Article and Find Full Text PDF

While NanoCluster Beacon (NCB) is a versatile molecular probe, it suffers from a low target-specific signal issue due to impurities. Here we show that adding a "blocker" strand to the reaction can effectively block the nonfunctional probes and enhance the target-specific signal by 14 fold at a 0.1 target/probe ratio.

View Article and Find Full Text PDF

Protein expression level is critically related to the cell physiological function. However, current methodologies such as Western blot (WB) and Immunohistochemistry (IHC) in analyzing the protein level are rather semi-quantitative and without the information of actual protein concentration. We have developed a microfluidic technique termed a "flow-proteometric platform for analyzing protein concentration (FAP)" that can measure the concentration of a target protein in cells or tissues without the requirement of a calibration standard, e.

View Article and Find Full Text PDF

Protein glycosylation provides proteomic diversity in regulating protein localization, stability, and activity; it remains largely unknown whether the sugar moiety contributes to immunosuppression. In the study of immune receptor glycosylation, we showed that EGF induces programmed death ligand 1 (PD-L1) and receptor programmed cell death protein 1 (PD-1) interaction, requiring β-1,3-N-acetylglucosaminyl transferase (B3GNT3) expression in triple-negative breast cancer. Downregulation of B3GNT3 enhances cytotoxic T cell-mediated anti-tumor immunity.

View Article and Find Full Text PDF

Background: Dopa-responsive dystonia (DRD) is a clinical syndrome characterized by early onset dystonia and a dramatic response to relatively low doses of levodopa. The autosomal dominant DRD is caused by mutations in the gene coding GTP cyclohydrolase 1 (GCH1), the enzyme that catalyzes the first step in the biosynthesis of tetrahydrobiopterin. We herein report a novel gene mutation causally links to DRD.

View Article and Find Full Text PDF

The cells of the vascular system are highly sensitive to biophysical cues from their local cellular microenvironment. To engineer improved materials for vascular devices and delivery of cell therapies, a key challenge is to understand the mechanisms that cells use to sense biophysical cues from their environment. Syndecans are heparan sulfate proteoglycans (HSPGs) that consist of a protein core modified with heparan sulfate glycosaminoglycan chains.

View Article and Find Full Text PDF

High-resolution melting (HRM) analysis of DNA is a closed-tube single-nucleotide polymorphism (SNP) detection method that has shown many advantages in point-of-care diagnostics and personalized medicine. While recently developed melting probes have demonstrated significantly improved discrimination of mismatched (mutant) alleles from matched (wild-type) alleles, no effort has been made to design a simple melting probe that can reliably distinguish all four SNP alleles in a single experiment. Such a new probe could facilitate the discovery of rare genetic mutations at lower cost.

View Article and Find Full Text PDF

Single-molecule measurements of DNA hybridization kinetics are mostly performed on a surface or inside a trap. Here we demonstrate a time-resolved, 3D single-molecule tracking (3D-SMT) method that allows us to follow a freely diffusing ssDNA molecule in solution for hundreds of milliseconds or even seconds and observe multiple annealing and melting events taking place on the same molecule. This is achieved by combining confocal-feedback 3D-SMT with time-domain fluorescence lifetime measurement, where fluorescence lifetime serves as the indicator of hybridization.

View Article and Find Full Text PDF

Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning. However, most currently available dual output laser sources rely on the costly and complicated optical parametric generation approach. In this report, we detail a relatively simple and low cost diamond Raman laser pumped by a ytterbium fiber amplifier emitting at 1055 nm, which generates a first Stokes emission centered at 1240 nm with a pulse width of 100 fs.

View Article and Find Full Text PDF

Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments).

View Article and Find Full Text PDF

In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time and under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. Beyond the capabilities of traditional camera-based tracking techniques, state-of-the-art SMT microscopies developed in recent years can record fluorescence lifetime while tracking a single molecule in the 3D space.

View Article and Find Full Text PDF

One of the major limitations of tissue-engineered cartilage is poor integration of chondrocytes and scaffold structures with recipient tissue. To overcome this limitation, an expandable scaffold with a honeycomb-like structure has been developed using microfluidic technology. In this study, we evaluated the performance of this expandable gelatin scaffold seeded with rabbit chondrocytes in vivo.

View Article and Find Full Text PDF

While N(6)-methyladenine (m(6)A) is a common modification in prokaryotic and lower eukaryotic genomes and has many biological functions, there is no simple and cost-effective way to identify a single N(6)-methyladenine in a nucleic acid target. Here we introduce a robust, simple, enzyme-free and hybridization-based method using a new silver cluster probe, termed methyladenine-specific NanoCluster Beacon (maNCB), which can detect single m(6)A in DNA targets based on the fluorescence emission spectra of silver clusters. Not only can maNCB identify m(6)A at the single-base level but it also can quantify the extent of adenine methylation in heterogeneous samples.

View Article and Find Full Text PDF

Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ∼15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm.

View Article and Find Full Text PDF

Purpose: The aim of this study was to test various methods of retrieving number data from hip and knee implants from cremated human remains and to validate our findings by cross referencing our results with the national joint replacement registry.

Method: Implants were collected from the remains of individuals who had donated their bodies to science following routine planned cremation. A number of different chemical and physical methods to expose the implant numbers on cremated implants to the point that they were legible were tested.

View Article and Find Full Text PDF

As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays.

View Article and Find Full Text PDF