Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs.
View Article and Find Full Text PDFMost recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT).
View Article and Find Full Text PDFImpairment of learning and memory is a significant pathological feature of many neurodegenerative diseases including FTLD-TDP. Appropriate regulation and fine tuning of spinogenesis of the dendrites, which is an integral part of the learning/memory program of the mammalian brain, are essential for the normal function of the hippocampal neurons. TDP-43 is a nucleic acid-binding protein implicated in multi-cellular functions and in the pathogenesis of a range of neurodegenerative diseases including FTLD-TDP and ALS.
View Article and Find Full Text PDFTDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin(+) inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U.
View Article and Find Full Text PDF