Publications by authors named "Yen-Der Li"

Chemically induced proximity modalities such as targeted protein degradation (TPD) hold promise for expanding the number of proteins that can be manipulated pharmacologically. However, current TPD strategies are often limited to proteins with preexisting ligands. Molecular glues (e.

View Article and Find Full Text PDF

Molecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed 'template-assisted covalent modification'.

View Article and Find Full Text PDF

The concept of induced protein degradation by small molecules has emerged as a promising therapeutic strategy that is particularly effective in targeting proteins previously considered "undruggable." Thalidomide analogs, employed in the treatment of multiple myeloma, stand as prime examples. These compounds serve as molecular glues, redirecting the CRBN E3 ubiquitin ligase to degrade myeloma-dependency factors, IKZF1 and IKZF3.

View Article and Find Full Text PDF

Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4 ligase, have been mostly discovered serendipitously.

View Article and Find Full Text PDF

Targeted protein degradation relies on small molecules that induce new protein-protein interactions between targets and the cellular protein degradation machinery. Most of these small molecules feature specific ligands for ubiquitin ligases. Recently, the attachment of cysteine-reactive chemical groups to pre-existing small molecule inhibitors has been shown to drive specific target degradation.

View Article and Find Full Text PDF

Purpose: Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy.

Experimental Design: We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients.

View Article and Find Full Text PDF
Article Synopsis
  • Nuclear hormone receptors (NRs) are important transcription factors that can be targeted for therapy, and their degradation is crucial for treating cancers linked to retinoic acid and estrogen receptors.
  • The study identifies UBR5 as a ubiquitin ligase responsible for degrading various agonist-bound NRs, including RARA and RXRA, and reveals structural insights into UBR5's interaction with these receptors.
  • The research shows that different ligands can affect the recruitment of coactivators and UBR5 to chromatin, thereby influencing the transcriptional regulation of NRs.
View Article and Find Full Text PDF

Recognition of aberrant gene isoforms due to DNA events can impact risk stratification and molecular classification of hematolymphoid tumors. In myelodysplastic syndromes, KMT2A partial tandem duplication (PTD) was one of the top adverse predictors in the International Prognostic Scoring System-Molecular study. In B-cell acute lymphoblastic leukemia (B-ALL), ERG isoforms have been proposed as markers of favorable-risk DUX4 rearrangements, whereas deletion-mediated IKZF1 isoforms are associated with adverse prognosis and have been extended to the high-risk IKZF1 signature defined by codeletions, including PAX5.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks multiple human proteins during infection and viral replication. To examine whether any viral proteins employ human E3 ubiquitin ligases, we evaluated the stability of SARS-CoV-2 proteins with inhibition of the ubiquitin proteasome pathway. Using genetic screens to dissect the molecular machinery involved in the degradation of candidate viral proteins, we identified human E3 ligase RNF185 as a regulator of protein stability for the SARS-CoV-2 envelope protein.

View Article and Find Full Text PDF

Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs. The discovery and development of molecular glues for novel targets, however, remains challenging.

View Article and Find Full Text PDF

Coronavirus Disease 2019 (COVID-19) has been the most severe public health challenge in this century. Two years after its emergence, the rapid development and deployment of effective COVID-19 vaccines have successfully controlled this pandemic and greatly reduced the risk of severe illness and death associated with COVID-19. However, due to its ability to rapidly evolve, the SARS-CoV-2 virus may never be eradicated, and there are many important new topics to work on if we need to live with this virus for a long time.

View Article and Find Full Text PDF

Immunomodulatory drugs are a class of drugs approved for the treatment of multiple myeloma. These compounds exert their clinical effects by inducing interactions between the CRL4 E3 ubiquitin ligase and a C2H2 zinc finger degron motif, resulting in degradation of degron-containing targets. However, although many cellular proteins feature the degron motif, only a subset of those are degradable via this strategy.

View Article and Find Full Text PDF

The COVID-19 pandemic has made a devastating impact on global health and continues to challenge healthcare infrastructure and delivery. The clinical laboratories were no exception as they are responsible for diagnostic testing that dictates many clinical, infection control, and public health decisions. Information technology and laboratory management tools are critical assets for maintaining and adapting operations in response to crises.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new type of coronavirus that causes the Coronavirus Disease 2019 (COVID-19), which has been the most challenging pandemic in this century. Considering its high mortality and rapid spread, an effective vaccine is urgently needed to control this pandemic. As a result, the academia, industry, and government sectors are working tightly together to develop and test a variety of vaccines at an unprecedented pace.

View Article and Find Full Text PDF

Introduction: The human papillomavirus (HPV) encoded oncoproteins E6 and E7 are constitutively expressed in HPV-associated cancers, making them logical therapeutic targets. Intramuscular immunization of patients with HPV16 L2E7E6 fusion protein vaccine (TA-CIN) is well tolerated and induces HPV-specific cellular immune responses. Efficacy of PD-1 immune checkpoint blockade correlates with the level of tumor-infiltrating CD8 + T cells, yet most patients lack significant tumor infiltration of immune cells making immune checkpoint blockade suboptimal.

View Article and Find Full Text PDF

Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously.

View Article and Find Full Text PDF

There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology.

View Article and Find Full Text PDF