Schizophrenia (SCZ) is a complex psychiatric disorder with high heritability; identifying risk genes is essential for deciphering the disorder's pathogenesis and developing novel treatments. Using whole-exome sequencing, we screened for mutations within protein-coding sequences in a single family of patients with SCZ. In a pathway enrichment analysis, we found multiple transmitted variant genes associated with two KEGG pathways: herpes simplex virus 1 (HSV1) infection and the extracellular matrix (ECM)-receptor interaction.
View Article and Find Full Text PDFProducts developed for skeletal muscle regeneration frequently incorporate allogeneic and xenogeneic materials to elicit a regenerative response to heal skeletal muscle wounds. To avoid graft rejection in preclinical studies, immunodeficient rodents are used. Whether the immunodeficiency alters the host response to the material in skeletal muscle has not been studied.
View Article and Find Full Text PDFThe coverage, thickness, and crystallinity of ZnInS (ZIS) shells on SiO core nanoparticles (SiO@ZIS) were systematically investigated using microwave-assisted solvothermal methods aided by the addition of acid in ethanolic medium. The surface modification of the SiO cores with (3-mercaptopropyl)trimethoxysilane was found to be critical to generate a homogeneous coverage of ZnInS. The SiO@ZIS core-shell nanoparticles exhibited the best coverage but poor crystallinity when synthesized in pure ethanol, whereas best crystallinity but poor coverage was observed when synthesized in an aqueous solution.
View Article and Find Full Text PDFBackground: Adipose tissue reaches cellular stasis after puberty, leaving adipocytes unable to significantly expand or renew under normal physiologic conditions. This is problematic in progressive lipodystrophies, in instances of scarring, and in soft-tissue damage resulting from lumpectomy and traumatic deformities, because adipose tissue will not self-renew once damaged. This yields significant clinical necessity for an off-the-shelf de novo soft-tissue replacement mechanism.
View Article and Find Full Text PDFCurrent strategies to treat volumetric muscle loss use primarily pedicle or free muscle transfers, but these grafts fail to adequately regenerate functional tissue. Decellularized soft tissue grafts possess physical and chemical cues to promote muscle regeneration, suggesting their potential for use in large muscle defects. In this study, we developed a decellularized muscle matrix (DMM) graft using rat gastrocnemius.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
October 2016
Background: Acellular dermal matrices (ADMs) are frequently used in reconstructive surgery and as scaffolds to treat chronic wounds. The 3-dimensional architecture and extracellular matrix provide structural and signaling cues for repair and remodeling. However, most ADMs are not uniformly porous, which can lead to heterogeneous host engraftment.
View Article and Find Full Text PDFBackground: The use of acellular dermal matrices (ADMs) has become the standard of practice in many reconstructive and aesthetic surgical applications. Different methods used to prepare the allograft tissue for surgical use can alter the ADMs natural properties. Aseptic processing has been shown to retain the natural properties of ADMs more favorably than terminally sterilized ADMs.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2015
This study discussed a computer-aided program development that meets the requirements of people with physical disabilities. A number of control modes, such as electrode signal recorded on the scalp and blink control, were combined with the scanning human-machine interface to improve the external input/output device. Moreover, a novel and precise algorithm, which filters noise and reduces misrecognition of the system, was proposed.
View Article and Find Full Text PDFClinical efforts to repair cartilage defects delivering cells or engineered cartilage implants into the lesions have met with limited success. This study used a critical-size chondral defect model in immunocompromised rat xiphoid cartilage to test whether endogenous chondrogenesis could be achieved using human bone matrix scaffolds to deliver human cartilage particles and/or a variant isoform of fibroblast growth factor-2 (FGF2-variant). Seventy-two male athymic RNU rats were enrolled in this study with eight rats per experimental group.
View Article and Find Full Text PDFMany functions of the extracellular matrix can be mimicked by small peptide fragments (e.g., arginine-glycine-aspartic acid (RGD) sequence) of the entire molecule, but the presentation of the peptides is critical to their effects on cells.
View Article and Find Full Text PDFPurpose: To attain the effective local and sustained delivery of plasmid DNA (pDNA) encoding for a growth factor.
Methods: We hypothesized that controlling the degradation rate of biomaterials encapsulating pDNA via concurrent physical dissociation of the cross-linked structure and hydrolytic chain breakage of polymers would allow one to significantly broaden the range of pDNA release rate. This hypothesis was examined using ionically cross-linked polysaccharide hydrogels which were previously designed to rapidly degrade via engineering of ionic cross-linking junction and partial oxidation of polysaccharide chains.
We present a demonstration and analysis of an industrialized design of a spatially dispersive displacement sensor, which is composed of an AlGaInP gain chip in visible range, optical assembly, and a spectrum analyzer. The sensor utilizes the spatial dispersion of focus from the optical assembly and wavelength spectrum's deviation induced by the displacement of the target. As a result, the sensor delivers a quick and simple way of measuring displacement.
View Article and Find Full Text PDFHomeostatic chemokines such as CCL19, CCL21, and CXCL13 are known to elicit chemotaxis from naive T and B cells and play a critical role in lymphocyte homing to appropriate zones within secondary lymphoid organs (SLO). Here we tested whether CCL21 and CXCL13 modulate murine lymphocyte motility in the absence of concentration gradients, using videomicroscopy to directly observe the migration of single cells. CCL21 treatment of T cells induced rapid polarization and sustained random migration with average speeds of 5.
View Article and Find Full Text PDFA novel paired surface plasma wave biosensor (PSPWB) is described and setup. By integrating the features of a common-path optical heterodyne interferometer and the amplitude-ratio detection mode, the PSPWB not only produces a high detection sensitivity but also provides a large dynamic measurement range for effective refractive index (Deltan(eff)) based on amplitude-sensitive detection method. Thus, the performance of PSPWB becomes equivalent to shot-noise limited of a conventional SPR biosensor.
View Article and Find Full Text PDFNonviral delivery vectors are attractive for gene therapy approaches in tissue engineering, but suffer from low transfection efficiency and short-term gene expression. We hypothesized that the sustained delivery of poly(ethylenimine) (PEI)-condensed DNA from three-dimensional biodegradable scaffolds that encourage cell infiltration could greatly enhance gene expression. To test this hypothesis, a PEI-condensed plasmid encoding beta-galactosidase was incorporated into porous poly(lactide-co-glycolide) (PLG) scaffolds, using a gas foaming process.
View Article and Find Full Text PDFUnlabelled: Bone formation is a coordinated process involving various biological factors. We have developed a scaffold system capable of sustained and localized presentation of osteogenic (BMP-4) and angiogenic (VEGF) growth factors and human bone marrow stromal cells to promote bone formation at an ectopic site. Combined delivery of these factors significantly enhanced bone formation compared with other conditions.
View Article and Find Full Text PDFIn the context of bone development and regeneration, the intimate association of the vascular endothelium with osteogenic cells suggests that endothelial cells (ECs) may directly regulate the differentiation of osteoprogenitor cells. To investigate this question, bone marrow stromal cells (BMSCs) were cultured: in the presence of EC-conditioned medium, on EC extracellular matrix, and in EC cocultures with and without cell contact. RNA and protein were isolated from ECs and analyzed by reverse transcriptase-polymerase chain reaction and Western blotting, respectively, for expression of bone morphogenetic protein 2 (BMP-2).
View Article and Find Full Text PDFJ Biomed Mater Res A
December 2003
Polyethylenimine (PEI) was combined with plasmid DNA and freeze dried following the addition of sucrose as a lyoprotectant and pore-forming agent. Freeze-dried PEI DNA condensates were dry mixed with granular polylactideglycolic acid (PLGA) then compression molded and sponged to encapsulated PEI DNA. A measurement of the elastic modulus indicated that 91 wt% sucrose substituted for 95 wt% sodium chloride as a porogen, resulting in PLGA sponges with a mechanical modulus of 100 kPa.
View Article and Find Full Text PDF