Fe(3)O(4) nanoparticles were in situ loaded on the surface of multiwalled carbon nanotubes (MWCNTs) by a solvothermal method using diethylene glycol and diethanolamine as solvents and complexing agents. The as-prepared MWCNT/Fe(3)O(4) hybrids exhibited excellent hydrophilicity, superparamagnetic property at room temperature, and a high T(2) relaxivity of 175.5 mM(-1) s(-1) in aqueous solutions.
View Article and Find Full Text PDFDevelopment of a multifunctional nanoparticle (NP) system allowing for dual-contrast T(1)- and T(2)-weighted targeted magnetic resonance (MR) imaging of tumors could significantly improve the diagnosis accuracy. In this study, superparamagnetic silica-coated iron oxide core-shell nanoparticles (Fe(3)O(4)@SiO(2) NPs) with a diameter of approximately 21 nm were synthesized via a thermal decomposition approach and were aminated through silanization. The amine-functionalized Fe(3)O(4)@SiO(2) NPs enabled the covalent conjugation of a paramagnetic gadolinium complex (Gd-DTPA, DTPA: diethylenetriamine pentaacetic acid) and an arginine-glycine-aspartic acid (RGD) peptide as a targeting ligand onto their surface.
View Article and Find Full Text PDF