The gene-encoding carboxylesterase () from the hyperthermophilic bacterium () was cloned and expressed in Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C.
View Article and Find Full Text PDFFusion protein combined the oligopeptide (HQAFFHA) with the C terminus of α-glucuronidase from Thermotoga maritima was produced in E. coli and purified for characterization and applications of glucuronic and glucaric acid production. The fusion protein with oligopeptide exhibited a 2.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2022
The first hyperthermophilic L-arabinose/D-galactose 1-dehydrogenase (TmAraDH) from Thermotoga maritima was heterologously purified from Escherichia coli. It belongs to the Gfo/Idh/MocA protein family, prefers NAD/NADP as a cofactor. The purified TmAraDH exhibited maximum activity toward L-arabinose at 75 °C and pH 8.
View Article and Find Full Text PDFAlkyl glycosides are well-characterized nonionic surfactants, and can be prepared by transglycosylation reactions with retaining GH1 glycosidases being normally used for this purpose. The produced alkyl glycosides can also be hydrolyzed by the glycosidase, and hence, the yields of alkyl glycosides can be too low for industrial use. To improve the transglycosylation-to-hydrolysis ratio for a β-glucosidase from Thermotoga maritima (TmBglA) for the synthesis of alkyl glycoside, six mutants (N222F, N223C, N223Q, G224A, Y295F, and F414S) were produced.
View Article and Find Full Text PDFβ-glucosidase (BglA) immobilization from Thermotoga maritima on magnetic nanoparticles (MNPs) functionalized with chitosan (Cs) were efficiently investigated to improve lactose conversion and galactooligosaccharides (GOS) production. We used a batch method in order to improve the conversion of lactose to GOS. The efficiency and yield of immobilization were 79% and immobilized BglA was effectively recycled via a magnetic separation procedure through a batch-wise GOS with no activity lessening.
View Article and Find Full Text PDFEnzyme immobilization is a powerful tool not only as a protective agent against harsh reaction conditions but also for the enhancement of enzyme activity, stability, reusability, and for the improvement of enzyme properties as well. Herein, immobilization of β-glucosidase from Thermotoga maritima (Tm-β-Glu) on magnetic nanoparticles (MNPs) functionalized with chitin (Ch) was investigated. This technology showed a novel thermostable chitin-binding domain (Tt-ChBD), which is more desirable in a wide range of large-scale applications.
View Article and Find Full Text PDFWheat bran (WB) was treated using xylanase and arabinofuranosidase from Thermotoga maritima and added to steamed breads on 15% flour weight basis. The antioxidant capacity and water and oil retention capacity of brans were increased while their soluble xylooligosaccharides and phenolic acids content were increased. Two enzymes treatment was found to be more effective in decreasing the resistance to extension, softening degree, water absorption and development time, and in increasing the extensibility, stability time, porosity and sensorial characteristics of the steamed breads.
View Article and Find Full Text PDFA thermostable uronate dehydrogenase Tb-UDH from Thermobispora bispora was over-expressed in Escherichia coli using the T7 polymerase expression system. The Tb-UDH was purified by metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on glucuronic acid was found at 60 °C and pH 7.
View Article and Find Full Text PDFTe-BglA and Tm-BglA are glycoside hydrolase family 1 β-glucosidases from Thermoanaerobacter ethanolicus JW200 and Thermotoga maritima, respectively, with 53% sequence identity. However, Te-BglA could more effectively hydrolyze isoflavone glucosides to their aglycones than could Tm-BglA, possibly due to the difference in amino acid residues around their glycone binding pockets. Site-directed mutagenesis was used to replace the amino acid residues of Tm-BglA with the corresponding residues of Te-BglA, generating three single mutants (F221L, N223L, and G224T), as well as the corresponding three double mutants (F221L/N223L, F221L/G224T, and N223L/G224T) and one triple mutant (F221L/N223L/G224T).
View Article and Find Full Text PDFAim Of The Study: To explore the mechanism of oxidative stress in the development of prostate cancer, here we compared 4-hydroxynonenal (4-HNE)- treated LNCaP (hormone-sensitive) and DU145 (hormone insensitive) cells with significant differences in sensitivity to androgen.
Material And Methods: The prostate cancer cell line LNCaP and late cell line DU145 were treated with different concentrations of 4-HNE. The cell proliferation, apoptosis and mitochondrial transmembrane potential were detected at different time points, and expression of related molecules in cell proliferation and apoptosis signal pathway was analyzed by Western blot, and the over-expression of glutathione S-transferase (GSTA-4) was used to validate the changes of the effects of 4-HNE on the two kinds of cells.
Magnetosome produced by Magnetospirillum AMB-1 is highly crystalline, monodisperse, bioengineerable and a better nanomagnetic material candidate for a broad range of applications, ranging from medicine, biology and electronics to aerospace engineering. Many efforts have been made to get the optimal growth conditions and improve the accumulation of magnetosome. Studies have showed that oxygen concentration is a key factor to the formation of magnetosome.
View Article and Find Full Text PDFA novel thermostable chitin-binding domain (Tt-ChBD) of chitinase A1 from Thermoanaerobacterium thermosaccharolyticum DSM571 was cloned, characterized, and compared for its binding activity with another mesophilic chitin-binding domain (Bc-ChBD). Recombinant protein with Tt-ChBD exhibits stronger affinity to chitin than those with Bc-ChBD at temperatures from 65 °C to at least 75 °C, but not to other polysaccharides including xylan, chitosan, cellulose, and agarose. For repeated production of xylose from arabinoxylan-containing feedstocks, a best-characterized trifunctional chimeric enzyme Xar-L1-Xyn (XX) constructed in our previous work was attempted to be immobilized on chitin efficiently by genetically fusing Tt-ChBD to the N-terminal region of XX (named CXX) and the C-terminal region of XX (named XXC), respectively.
View Article and Find Full Text PDFA novel thermostable β-glucosidase (Te-BglA) from Thermoanaerobacter ethanolicus JW200 was cloned, characterized and compared for its activity against isoflavone glycosides with two β-glucosidases (Tm-BglA, Tm-BglB) from Thermotoga maritima. Te-BglA exhibited maximum hydrolytic activity toward pNP-β-d-glucopyranoside (pNPG) at 80 °C and pH 7.0, was stable for a pH range of 4.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2011
The 1,914-bp open reading frame of xylC from Thermoanaerobacterium saccharolyticum JW/SL-YS485 encodes a calculated 73-kDa β-xylosidase, XylC, different from any glycosyl hydrolase in the database and representing a novel glycohydrolase family. Hydrolysis occurred under retention of the anomeric configuration, and transglycosylation occurred in the presence of alcohols as acceptors. With the use of vector pHsh, expression of XylC, the third β-xylosidase in this bacterium, increased approximately 4-fold when a loop within the translational initiation region in the mRNA was removed by site-directed mutagenesis.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
November 2009
A recombinant Thermotoga maritima beta-glucosidase A (BglA) was purified to homogeneity for performing enzymatic hydrolysis of isoflavone glycosides from soy flour. The kinetic properties K(m), k(cat), and k(cat)/K(m) of BglA towards isoflavone glycosides, determined using high-performance liquid chromatography, confirmed the higher efficiency of BglA in hydrolyzing malonylglycosides than non-conjugated glycosides (daidzin and genistin). During hydrolysis of soy flour by BglA at 80 degrees C, the isoflavone glycosides (soluble form) were extracted from soy flour (solid state) into the solution (liquid state) in thermal condition and converted to their aglycones (insoluble form), which mostly existed in the pellet to be separated from BglA in the reaction solution.
View Article and Find Full Text PDFTo efficiently produce xylobiose from xylan, high-level expression of an alpha-L-arabinofuranosidase gene from Thermotoga maritima was carried out in Escherichia coli. A 1.5-kb DNA fragment, coding for an alpha-L-arabinofuranosidase of T.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
July 2004
The xylanolytic enzymes found in Thermotoga maritima showed extremely high thermostability and considerable potential in industrial application. Yet expression level of the genes encoding these enzymes was very low. The alpha-glucuronidase gene aguA from T.
View Article and Find Full Text PDFA thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.
View Article and Find Full Text PDF